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Abstract 

 
We propose a new Swarm Intelligence optimization method for discrete 
problems. The procedure is similar to the PSO, however we do not use the 
velocity concept but we keep the notion of attraction of the leaders. The effect 
of the attractions on the particles consists in a series of improving moves 
approaching the attractor. The method also includes a local search to improve 
the evolving solutions. The described method is applied for the discrete p-
median problem. It is an NP-Hard problem for which most of the metaheuristics 
and nature-inspired procedures have been applied. The procedure is compared 
with the known discrete versions of the PSO for this problem.  
 
Keywords. Swarm Intelligence. Particle Swarm Optimization. p-Median. 
Metaheuristics. Logistics.  

1. Introduction 
Swarm intelligence [12], [13] is a new computational intelligence paradigm combining 
ideas derived the social behaviour in nature. Swarm optimization comprises several 
tools derived from the collective intelligence of a decentralized group of individuals. 
The main swarm optimization methods are Ant Colony Optimization (ACO) [9] and 
Particle Swarm Optimization (PSO) [6]. 

Particle Swarm Optimization, PSO is a promising relatively recent metaheuristic 
introduced by James Kennedy and Russel Eberhat [10], [18]. It is a evolutionary method 
inspired by the social behaviour of individuals within swarms in nature, like flocks of 
birds or banks of fish. In this method a swarm of particles fly in the virtual space of the 
possible solutions that interact. The movement of the particles is conducted by the 
inertia, its memory and the attraction of the positions with the best performance. Each 
particle has associated a position in the solution space and a velocity or rate of change. 
The particles remember at which position they achieved their highest performance. Each 
particle communicates with a subset of the swarm that constitutes its neighbourhood 
that can change dynamically. Every particle can also get which particle achieved the 
best overall position in its neighbourhood. The dynamic of the swarm is influenced by 
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the attractors that, in some models include in addition of the best position of the own 
particles and the best position of their neighbourhood, the global best position. 

Since there is not possible to thrown to fly particles in a discrete space, several 
adaptations to discrete problems have proposed, known as Discrete Particle Swarm 
Optimization, DPSO. In this work we propose a swarm inspired optimization method 
for discrete problems. Since inertia and velocity lose sense in a discrete space we do not 
consider such components but include a local search. We consider an implementation of 
this method that takes account the real separation between two solutions considers. 

The following sections introduce the standard version of the PSO and review the 
discrete PSO (DPSO) appeared in literature. We describe the new method that avoid the 
notion of inertia and velocity and keep the use of best position as attractors. Finally we 
describe the computational experience made. The paper ends with some brief 
conclusions.  

2. Particle Swarm Optimization 
The Particle Swarm Optimization (PSO) is inspired by the continuous movement of the 
particles that form swarm in nature subject to the effect of the inertia and of the 
attraction of the best members that lead the swarm. Two of the most important 
characteristics in the development of this metaheuristic are the facility of 
implementation and the use of the evolution of the social relations as a computational 
model. In a PSO heuristic, particles of the swarm are interpreted like search agents who 
cross the space of solutions. The PSO [6] was initially proposed as a procedure to solve 
optimization problems with continuous variables.  

For an optimization problem with d continuous variable, each particle i of the swarm 
S = {1, 2, …, s} has associated its position vector xi = (xi1, xi2, …, xij, …, xid) and its 
velocity (or rate of change) vector vi = (vi1, …, vij, …, vid). Each particle i of the swarm 
communicates with a subset of S or environment or neighbourhood N(i) ⊆ S that can 
vary dynamically. Each particle keeps and uses information of its better position during 
the process search. Also it can obtain the best position reached among the particles of 
his social neighbourhood, which can be the whole swarm or a part of it. The information 
of the best positions influences in the behaviour of particles. In all these cases the value 
of the objective function like the adaptation function or fitness is also stored.  

The initial positions and velocities of particles are usually obtained randomly within 
some limits. At every iteration, the particles update their position and velocity by means 
of recurrent equations. The position is modified using exclusively its velocity, but in the 
updating of the velocity they take into account, in addition to the value of the own 
velocity, the best position of the own particle and the best position of the group of 
particle of the swarm to which it is related; its social neighbourhood or neighbourhood. 
These best positions, individual and joint, act with different weights, like centres of 
attraction for particles. In the standard PSO, procedure according to the proposal of 
Kennedy and Eberhart [20], the vector equations to update the position xi and velocity vi 
of each particle of the swarm, are the following:  

vi = c1 vi + c2 ξ (bi – xi) + c3 ξ (gi – xi) 
xi = xi + vi 

where vectors bi and gi are the best position than has had this particle since the 
procedure started and the best position between those than has had all particles of the 
group or social neighbourhood of this particle. The parameter c1 represents the effect of 
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the inertia whose mission is to control the magnitude of the velocity and to avoid that it 
grows indefinitely. The values c2 and c3 are the weights that represent the degree of 
confidence of the particle in, itself and its social group, that in many versions are equals. 
The symbol ξ refers to a random number with uniform distribution in [0,1] that is 
independently generated each time. These values are usually positive and inferior to 
one; in most versions c1 = 1, or c2 = c3 or even c1 + c2 + c3 = 1. In the standard version 
PSO-20071 proposed by Maurice Clerc, the values for these parameters are set to 
c1 = 1/(2+ln2) = 0.721 and c2 = c3 = 0.5 + ln2 = 1.193. In this version the size of the 
neighbourhoods is K = 3 and the size of the swarm is fixed to 10 + 2 d  where d is the 
dimension of the space of solutions. In the former standard version PSO-20062, the 
structure of neighbourhoods is obtained as follows. Since, the number K of particles that 
informs to each other is fixed, the particles that constitute the neighbourhood of each 
particle are chosen at random. The neighbourhoods are newly generated at the iterations 
when the best global position g* does not improve. In the standard version PSO-2007 
structure of neighbourhoods is obtained at random from the fixed number K of 
informant as follows. Each possible link is activated with probability p = 1 − (1 − 1/s)K.  

In addition to the random selection of neighbourhoods, the two most often topologies 
for the structure of neighbourhood are the ring and the star topologies. With the ring 
structure, each particle interacts with the previous one and following one (in a cyclic 
arrangement); i.e., N(1) = { s, 1, 2 },  N(s) = { s−1, s, 1 }  and  N(i) = { i−1, i, i+1 }, for 
1 < i < s. In the star structure each particle interacts with all particles of the swarm; 
N(i) = S, for 1 ≤ i ≤ s. 

Parameter selection for PSO has been considered in [11], [14], [34] and [37]. The effect 
of the neighbourhood structure has been analysed in [17] 

3. Discrete PSO 
The PSO was originally proposed for optimization problems with continuous variables, 
but since, in words of its creators, it is not possible “to throw to fly” particles in a 
discrete space, several ways have been proposed to adapt the methodology to discrete 
problems. A group of individuals (agents search) that cross a discrete space 
simultaneously jumping from solutions to solution without sinking in intermediate 
positions naturally recalls the behaviour of a group frogs jumping from stone to stone in 
a pool. The corresponding bio-inspired method is named Jumping Frog Optimization 
(JFO) and the main difference with PSO is that the inertia and velocity components are 
replaced by sporadically random jumps.  

The DPSO proposed by Kennedy and Eberhat [19] for optimization problems with 
binary variables was the first method named DPSO (Discrete Particle Swarm 
Optimization). In this method, the position of each particle is a binary vector xi = (xi1, 
xi2, …, xij, …, xid) in the d-dimensional binary space, xij ∈ {0,1}d, but the velocity is still 
a d-dimensional vector vi = (vi1, vi2, …, vij, …, vid) of the continuous d-dimensional 
space, xij ∈ ℜd. The velocity is also interpreted as the rate of change of each component 
of the position vector and is updated by same the formula: 

vi = c1 vi + c2 ξ (bi – xi) + c3 ξ (g – xi). 

                                                 
1 http://www.particleswarm.info/Standard_PSO_2007.c 
2 http://www.particleswarm.info/Standard_PSO_2006.c 
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Nevertheless the position is obtained exclusively from the velocity by a new procedure. 
The original proposal of the authors of the PSO [19] uses the sigmoid function. Then 
every variable xij of the particles takes value 1 with probability (1 + exp(−vij))−1, and 0 
otherwise. In order to avoid the explosion in the velocity, besides to use a small 
coefficient of inertia c1, it is used a bound for its components (the typical values are 
around 6,0).  

Other proposals to deal problems with discrete variables are the following. In [35] 
considers a version of the DPSO with a different form to update the velocity. In [1] is 
used a method based on the DPSO whose particles are influenced alternatively by the 
best position of their particular route and of its neighbourhood instead of 
simultaneously. In [27] is used the angular modulation just by four parameters in the 
continuous PSO. Proposed PSO versions for problems where the solutions are 
permutations, like in the well known Travelling Salesman Problem TSP, has been 
applied in [26], [28] [32] and [29]. In [29] a PSO has been applied to several integer 
programming problems. A discrete PSO with multiple values (MVPSO); i.e. a version 
for discrete variables with several values; not only binary, is proposed in [30]. The 
positions of the particles that are one-dimensional in the PSO and are bi-dimensional in 
the DPSO, are three-dimensional in the MVPSO. The positions of the particles are 
given by the values xijk that represent the probabilities that, in the position of the i-th 
particle, the j-th variable takes its k-th possible value. Therefore the evaluation of 
particles is at any moment stochastic and the velocity is also three-dimensional. 

Correa and Freitas proposed in [8] a discrete PSO for the attribute selection in Data 
Mining that can be applied to the p-median problem, and to any other problem whose 
solution space is constituted by a selection of items of a finite universe. In this version, 
characteristic vectors are used to represent the set of variables. If d is the number of 
variables between which to make the selection, the position and the velocity of each 
particle are vectors with dimension d. The position vectors are binary vectors but the 
velocity vectors are constituted by positive real numbers. Each component of the 
velocity vector is interpreted as the relative probability of the corresponding binary 
component of the vector of position of the particle. The equation to update the velocity 
is:  

vi = vi + c1 xi + c2 bi + c3 gi. 
Note that, for each particle, the vectors xi, bi and gi correspond to particle positions and 
are binary but the velocity vi is not binary.  

In order to initialize the swarm, the number of items of each particle is selected at 
random. This number, possibly different for the particles, is fixed throughout the 
process. Then so many variables are selected at random as it corresponds for each 
particle. The initial velocity vector of all particles is constituted by ones.  

In order to obtain the position of the particle from the corresponding velocity, one of its 
components is multiplied by a random number ξ uniformly distributed in [0,1]. Then, 
value 1 is assigned to the variables that reach the greatest products, leaving the rest of 
the variables with 0. The number of variables that reach value 1 is the corresponding 
one for each particle. 

4. The Jumping Frogs Optimization. 
In this work we propose a new discrete method that derives from the PSO but that it 
works without some important elements of the PSO and adds other new ones reason 
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why it is considered a new metaheuristic of collective natural intelligence; the Jumping 
Frogs Optimization (JFO). In a discrete space, when lacking continuity, the movement, 
the velocity and inertia ideas loses sense, reason why the JFO works without these 
components, it keeps the attraction by the best positions. Instead of velocity and inertia 
we considered a random component in the movement of particles; that now it has the 
form of jumps. We use for the update of the position of the particle an expression 
similar to the one of Correa and Freitas for the update of the velocity. We interpret the 
weights of the equation as the probabilities that of a behaviour at random or guided by 
attraction of the best position of the own particle, or by attraction of the best position of 
its social neighbourhood or by attraction of the best global position. The attraction of 
these positions causes that the position of the particle evolves approaching some of 
these attractors whereas improvement; in a similar way a path re-linking improving.  

We formally expressed the update equation by: 

xi = c1 xi ⊕ c2 bi ⊕ c3 gi ⊕ c4 g*. 

The result of this operation consists of making random moves with probability c1, 
approaching moves towards the best position of the own particle bi with probability c2, 
towards the best position of its social neighbourhood gi with probability c3, or towards 
the best global position g* with probability c4. The approach movements can be those of 
any local procedure search or path re-linking procedure. If the solutions are sets of 
points, the moves can be the interchange, elimination or insertion of elements, taking 
into account that the eliminated elements cannot be in the attractor and the inserted ones 
must came from the attractor. The attraction moves that do not produce improvement 
are rejected. This result is obtained in the following form.  

In order to update the position with this operation, the unit interval [0,1] is divided into 
four segments with lengths c1, c2, c3 and c4 = 1 − (c1 + c2 + c3). Then a random number 
is generated with uniform distribution in [0.1] and based on the segment to which the 
resulting random number belongs, random improvement movements are applied to the 
position of the particle towards the corresponding attractor. The number of movements 
applied in each generation to the position of a particle is chosen at random according to 
a geometric probability distribution with mean equal to the product of p by the 
corresponding coefficient ci. Therefore, after each movement a number generated at 
random with uniform distribution in [0.1] is multiplied by p and by corresponding 
coefficient ci. If the result is greater than 1 a new move is applied, otherwise the 
movement stops until the next generation. The new move is generated at random and 
rejected if it does not improve the position. 

In addition the JFO to incorporate a local search similar to the memetic algorithms and 
cultural algorithms. Namely, after each random or approaching to attractor movement, a 
local search is applied to every particle in the swarm. The local search consists in 
applying an improvement to the position while it exists. In order to do it, the improving 
move is chosen following an anxious strategy instead a greedy one. The set of possible 
moves is explored staring from a random one, and the first move found that improve the 
position is applied. However, the improving moves stop only when this exploration 
ends without improvement in the whole set of possible moves for the current position. 

5. The p-Median Problem 
The p-median problem one is one of the most important problems in location of services 
and constitutes one of the centres of interest in the logistic planning [5]. One of the 
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questions that they confer to him great importance to the p-median problem one is to 
serve as model and prototype for other excellent problems on which the alternative 
solutions are based on choosing a fixed number of elements. In order to formalize the p-
median problem one as a problem of location of services considers a set of n demand 
points where are the users of the service denoted by Z = { z1, z2, …, zn }, and a set L = { 
l1, l2, …, lm } of possible locations of the points on watch. Each point of demand zi 
usually has associate a weight wi, that represents the amount that it demands or users in 
this point. The p-median problem consists of determining p simultaneously points of L 
(the medians) of which to establish the service, so that the total cost is diminished of 
transports necessary to satisfy all the demands of the users, supposing that this cost is 
proportional to the amount of demand and the whole range. Therefore, each user will be 
taken care of by the point on watch (median) closest than has a limitless capacity. In the 
classic discrete p-median problem Z and L are finite and formed by vertices or nodes of 
a network. In standard case Z = L = V. It is an NP-hard optimization problem (see [23] 
and [15]). If the p-median problem considers on a graph G = (V,A), where the demand 
points are vertices  V and set L is formed by all the points on the graph, including the 
vertices in V and all the intermediate points of the edges of A, is possible to restrict the 
search for p-median only to the vertices (see [16]). Therefore, the set L of possible 
locations can also be considered restricted to own set V of the vertices of the graph, 
becoming a discrete p-median problem one. In the exposition commonest all the 
vertices are simultaneously the points of demand and those of possible location; Z = L = 
V (in addition all have equal weight). The discrete p-median problem is approached 
using the matrix of distances D between all the pairs formed by a possible location of L 
and a point of demand of Z. If the problem is created in a graph or network, these are 
distances between vertices that can be obtained by well-known algorithms of minimum 
ways, like those of Dijkstra or Floyd. If the problem is created in the plane, set L of 
possible locations and the set of points of demand Z are finite set of points and it works 
with the matrix of Euclidean distances. In the case commonest sets Z and L are equal 
and the matrix of distances D is a square matrix. Therefore the discrete p-median 
problem usually considered in strictly mathematical terms from the elements of the 
matrix of distances D = [dij = d(zi,zj), i,j = 1, 2,…, n], and the vector of weights w = [wi, 
i = 1, 2,…, n]. The objective is to find p rows of D that the average, weighed by the 
weights of w, of the minimums of each column in those rows is minimum. That is to 
say, is to find the set of indices J ⊆ {1, 2,…, n} with |J| = p, that minimizes:  

∑
=

∈
=

n

i
ijJji dwXF

1

min)(  

For the discrete p-median problem very different procedures from resolution have 
proposed; from the initial work of Cooper [7] has been applied most of heuristic the 
exact methods and. One recent revision of the applied heuristic procedures is in [24] and 
one annotated bibliography in [31]. Between the applied procedures are evolutionary 
procedures like the genetic algorithms [2], [25] and the Ant Colony Systems [21]. 
Method PSO has been applied recently to a problem of location similar to the p-median 
one but with costs of location in [33]. 

6. Computational Experiments  
The DPSO proposed by its creators [19] for problems of optimization with binary 
variables, that was the first denominated DPSO (Discrete Particle Swarm Optimization). 
allows to deal with sets points by means of the characteristic vector (see [20]). Among 
discrete versions of the PSO proposed in Literature, the most appropriate for the 
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discrete p-median problem is naturally the recent proposal of Correa and Freitas [8]. 
The only aspect that has to be modified is the number of elements of each particle that 
comes fixed to p, instead of being generated at random for each particle. The local 
search for the p-median included in the implementation is the proposal by Maranzana 
[22] that consists of the alternative application of allocation movements and location, 
until improvement is not obtained. The allocation consists of assigning each demand 
point to the nearest median of the solution represented by the position of the particle. 
The location consists of determining by inspection the median one of each one of these 
sets. Formally, the Zj sets are defined by Zj = {z ∈ Z: d(z,xj) = mink d(z,xk)} and each 
point xj of the position of the particle is replaced by the 1-median of Zj; the point that 
minimizes max {d(x,z): z ∈ Zj}.  

For the computational experience, we selected problems of the OR-Library [4] that are 
used assiduously to prove heuristic for the p-median problem. The objective of the 
experience is to show the behaviour of the new proposals in comparison with the 
versions of the PSO of Literature. In order to compare the versions considered for p-
median the discrete one 10 problems of the 40 available in the OR-Library [4] were 
selected and that are used frequently to prove heuristic procedures for this problem 
since they appeared in [3]. In table II are the results obtained with the adaptation of the 
proposal of Correa and Freitas (DPSO) and our proposal, without (JFO-LS) and with 
(JFO+LS) local search (LS). In JFO we used c1 = 1.5 and c2 = c3  = 0.33. 

 

TABLE I. RESULTS FOR THE P-MEDIAN 

Ints n p DPSO JFO-LS JFO+LS Optima 

1 100 5 5821 5819 5819 5819 

2 100 10 4113 4093 4093 4093 

3 100 10 4250 4250 4250 4250 

4 100 20 3122 3034 3034 3034 

5 100 33 1427 1357 1355 1355 

6 200 5 7858 7824 7824 7824 

7 200 10 5656 5639 5631 5631 

8 200 20 4590 4445 4445 4445 

9 200 40 2931 2773 2738 2734 

10 200 67 1466 1276 1269 1255 

 

The values of the parameters chosen for the tests with p-median were similar for the 
three procedures. The size of the swarm was 50 and the size of the random 
neighbourhood was 15. The coefficients of the equation of update of the velocity in 
DPSO were fixed to c1 = 0.1, c2 = 0.2 and c3 = 0.5. The attraction coefficients in our 
JFO were fixed to c1 = 0.1, c2 = 0.2, c3 = 0.5 y c4 = 0.1. 

7. Conclusions.  
In this work the application of the PSO to the p-median problem has been analyzed. The 
most standard versions of the PSO for the p-median problem have been implemented 
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making a slight adjustment of parameters. New version for the problems that consider 
the attraction between the solutions represented by particles following a faithful 
interpretation the problem. In addition the incorporation of a local search has improved 
the positions of particles after each update. The obtained experimental results show that 
an adjustment of the parameters of the versions is necessary standard to obtain of them 
an appropriate yield. Our proposal considerably improves the quality of the contributed 
solutions. Also another is that the introduction of the local search is able to improve still 
more the quality of the contributed solutions being reached the optimal solution in 
enough cases.  

As future investigations are deepened in the experimental study of the aspects 
considered here. In addition the possibility will study of using other structures of 
neighbourhood and of paralleling the procedure. Also the application to other standard 
problems of the logistic planning and to mixed and more realistic problems will be 
considered. 
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