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ABSTRACT: This report studies constructive heuristics for the minimum labelling spanning tree 
(MLST) problem.  The purpose is to find a spanning tree that uses edges that are as similar as 
possible. Given an undirected labeled connected graph (i.e., with a label or color for each edge), 
the minimum labeling spanning tree problem seeks a spanning tree whose edges have the smallest 
possible  number  of  distinct  labels.  The  model  can  represent  many  real-world  problems  in 
telecommunication networks, electric networks, and multimodal transportation networks, among 
others, and the problem has been shown to be NP-complete even for complete graphs. A primary 
heuristic, named the maximum vertex covering algorithm has been proposed. Several versions of 
this constructive heuristic have been proposed to improve its  efficiency. Here we describe the 
problem, review the literature and compare some variants of this algorithm. 

1. INTRODUCTION

Many combinatorial  optimization problems can be formulated on a graph where the 
possible  solutions  are  spanning  trees.  These  problems  consist  of  finding  spanning  trees 
optimizing  some  measure  and  have  been  extensively  studied  in  graph  theory.  Typical 
measures include the total length or the diameter of the tree. The minimum labeling spanning 
tree (MLST) problem is one of these problems. Many real-life combinatorial optimization 
problems belong to this class of problems and consequently there is  a large and growing 
interest  in  both  theoretical  and  practical  aspects.  For  some  of  these  problems  there  are 
polynomial-time algorithms, while most of them are NP-hard. Mainly, it means that it is not 
possible to guarantee that an exact solution to the problem can be found and one has to settle 
for heuristics and approximate solution approaches with performance guarantees. 

In  the  MLST problem,  we are  given  a  graph with  colored  edges,  and  one  seeks  a 
spanning tree with the least number of colors. Such a model can represent many real-world 
problems in telecommunication networks, electric networks, and multimodal transportation 
networks, among others. For example, in communication networks, there are many different 
types of communication media, such as optic fiber, cable, microwave, telephone line and so 
on (Tanenbeum A.S., 1989). A communication node may communicate with different nodes 
by  choosing  different  types  of  communication  medium.  Given  a  set  of  communication 
network nodes, the problem is to find a spanning tree (a connected communication network) 
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that uses as few types of communication lines as possible. This spanning tree will reduce the 
construction cost and the complexity of the network. 

The MLST problem can be formulated as a network or graph problem. We are given a 
labeled  connected  undirected  graph  G  =  (V,E,L).  The  vertices  represent  communication 
nodes, the edges communication links and the labels communication type. Each edge in E is 
labeled  or  colored  by  a  label  or  color  in  a  finite  set  L that  identifies  the  type  of 
communication; different edges in the graph may have the same label. The objective is to find 
a spanning tree which uses the smallest number of different types of edges. Define LT to be 
the set of different labels of the edges in a spanning tree T. The labeling can be represented by 
a function  fL:  E → L for all edges  e∈E or by a partition  PL of the edge set; the sets of the 
partitions are those consisting of the edges with the same label or color. 

For  example,  for  telecommunication  networks  (and,  more  generally,  any  type  of 
communication networks), managed by different and competing companies, the aim of each 
company is to ensure the service to each terminal node of the network whilst minimizing the 
cost  (represented  by  connections  managed  by  other  companies).  The  telecommunication 
network is represented by a graph where each edge is assigned a set of colors and each color 
denotes a different company managing the edge (Voss S., Cerulli R., Fink A. and Gentili M., 
2005). The aim is to find a spanning tree of the graph using the minimum number of colors, 
which means that  all  the  terminal  nodes  are  required to  be  covered  avoiding cycles  and 
minimizing the overall number of different companies.

The minimum labeling spanning tree problem (MLSTP) is formally defined as follows:

MLST Problem.  Given a  labeled graph  G =  (V,E,L),  find a 
spanning tree T of G such that |LT| is minimized, where LT  is the 
set of labels used in T. 

Figure 1 shows an input graph and its optimal MLST solution (Xiong Y., 2005). In 
contrast  to  the  traditional  minimum  spanning  tree  (MST)  problem,  the  MLST  problem 
focuses on the uniqueness of a graph instead of the cost of a graph.

The rest  of  the  report  is  organized  as  follows.  In  the  next  section,  we  review the 
literature on the problem. In section three we present several versions of the maximum vertex 
covering algorithm (MVCA). Section four includes the experimental analysis and the report 
ends with some brief conclusions.

Figure 1: A sample graph and its optimal solution for the MLST problem.

2. LITERATURE REVIEW
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In communication network design, it is often desirable to obtain a tree that is “most 
uniform” in some specified sense. Motivated by this observation, Chang  R.S. and Leu S.J. 
(1997) introduced the minimum label spanning tree problem. They also proved that it is a NP-
hard problem and provided an exponential  time algorithm, the  maximum vertex covering 
algorithm (MVCA),  to  find,  in  polynomial  time,  (possibly  sub-optimal)  solutions.  This 
heuristic begins with an empty graph: H = (V,∅). Then it successively adds the label whose 
edges  cover  as  many  uncovered  nodes  as  possible  until  all  the  nodes  are  covered. The 
heuristic solution is an arbitrary spanning tree of the resulting graph. The maximum vertex 
covering algorithm is given in Figure 2.

Original MVCA Algorithm
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree.
1. Let C ← ∅ be the initially empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. While H has unvisited nodes:

3.1. Find the unused label c∈(L–C) such that edges with label c cover as many 
uncovered vertices as possible. If there is more than one candidate, select 
one randomly.

3.2. Add label c to the set of used colors C: C ← C  ∪ {c}.
3.3. Update H - add all the edges of label c: EH  ← EH  ∪ E({c}).
end while.

4. Take an arbitrary spanning tree T of H.
Algorithm 1. Original MVCA

However,  this  version of  MVCA has  a  major  error.  Sometimes,  it  does not  yield a 
connected graph after all nodes are visited and thus fails, as can be seen in the example shown 
in  Figure 2. This figure shows how the MVCA version of  Chang R.S. and Leu S.J. (1997) 
works on the graph G of Figure 1.

LABEL 1 2 3 4
NUMBER OF VISITED NODES 6 6 4 3

Figure 2: Original MVCA solution of the graph presented in Figure 1.

MVCA begins with an empty graph and first adds the label covering the highest number 
of unvisited nodes. In this example, label 1 and label 2 cover the same highest number of 
vertices (6). Suppose MVCA selects one of them randomly. So it adds label 1. Then it adds 
label 3 (4 vertices). At this time, all the nodes of the graph are visited and so MVCA halts, but 
the subgraph is still disconnected!
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A corrected version of MVCA was proposed by Krumke S.O. and Wirth H.C. (1998). 
This version of MVCA begins with an empty graph. It successively adds labels by reducing 
the  number  of  connected  components  by  as  many  as  possible  until  only  one  connected 
component is left, i.e. when only a connected subgraph is obtained. The details of this version 
of MVCA are described as follows:

Revised MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C ← ∅ be the initially empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. Let Comp(C) be the number of connected components of H=(V,E(C)).
4. While H has more than one connected component:

4.1. Select the unused color c ∈ (L–C) that maximizes Comp(C  ∪ {c}).
4.2. Add label c to the set of used colors C: C ← C  ∪ {c}.
4.3. Update H - add all the edges of label c: EH  ← EH  ∪ E({c}).
end while.

5. Take an arbitrary spanning tree T of H.
Algorithm 2. Revised MVCA

1st ITERATION:
LABEL 1 2 3 4

NUMBER OF COMPONENTS 3 4 4 5
2st ITERATION:

LABEL 1 2 3 4
NUMBER OF COMPONENTS - 2 2 2

3st ITERATION:
LABEL 1 2 3 4

NUMBER OF COMPONENTS - 1 - 1

Figure 3: How the revised MVCA version works.

Figure 3 shows how this version of MVCA works on the graph of Figure 1. In the first 
step,  it  adds  label  1  because  it  gives  the  least  number  of  connected  components  (3 
components). In the second step, all the three remaining colors (2, 3 and 4) produce the same 
number of components (2). In this case, the algorithm proceeds completely at random and it 
adds label 3. At this time, all the nodes of the graph are visited, but the subgraph is still 
disconnected. The old version of Chang R.S. and Leu S.J. (1997) stopped here, resulting in an 
error because  the subgraph is still  disconnected. However,  the MVCA version of Krumke 
S.O. and Wirth H.C. (1998) finally adds label 2 to get only one connected component (even if 
it  could add label 4 instead label 2;  as in the second step, the selection criterion chooses 
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arbitrarily). Summarizing, the final solution is {1;  2;  3}, which is worse than the optimal 
solution {2; 3} of Figure 1.

Another feature of the MVCA heuristic is its worst-case behavior. Krumke S.O. and 
Wirth H.C. (1998) proved also that MVCA can yield a solution no greater than (1 + 2 log n) 
times optimal, where  n  is the total number of nodes. Later, Wan Y., Chen G. and Xu Y. 
(2002)  obtained a  better  bound for the greedy algorithm introduced by  Krumke S.O. and 
Wirth H.C. (1998). The algorithm was shown to be a (1 + logּ(n−1))-approximation for any 
graph with n nodes (n > 1), improving the known performance guarantee (1 + 2ּlog n).

Brüggemann T., Monnot J. and Woeginger G. J. (2003) used a different approach; they 
applied local search techniques based on the concept of j-switch neighborhoods to a restricted 
version of the MLST problem. In addition, they proved a number of complexity results and 
showed that if each label appears at most twice in the input graph, the MLST problem is 
solvable in polynomial time.

The MVCA bounds obtained in Wan Y., Chen G. and Xu Y. (2002) and Krumke S.O. 
and Wirth H.C. (1998) are not tight bounds.  In fact,  these bounds can never be attained. 
Xiong Y., Golden B. and Wasil E. (2005) obtained a tight result. For any graph with label 
frequency bounded by  b, they showed that the worst-case bound of MVCA is  bth-harmonic 
number Hb, that is:

∑
=

=
b

i
b i

H
1

1

Later, they constructed a worst-case family of graphs such that the MVCA solution is 
exactly  Hb times the  optimal solution. Since  Hb <  (1 + logּ(n −  1)) and  b ≤ (n −  1) (since 
otherwise the subgraph induced by the labels of maximum frequency contains a cycle and one 
can safely remove edges from the cycle without changing the problem), the tight bound Hb 

obtained is, therefore, an improvement on the previously known performance bound of (1 + 
log(n−1)) given by Wan Y., Chen G. and Xu Y. (2002).

Xiong Y., Golden B. and Wasil E. (2005) presented a genetic algorithm (GA) to solve 
the MLST problem, outperforming MVCA in most cases. 

Subsequently,  Voss S., Cerulli R., Fink A. and Gentili  M. (2005) applied their  pilot  
method (originally developed by Duin C. and Voss S. (1999) and subsequently extended by 
Voss S. (2005)) to the MLST problem. Their pilot method is a greedy heuristic with a limited 
look-ahead capability. This modified version of MVCA tries each label at the first step and 
then applies MVCA in a greedy fashion from there on. Then it selects the best of the resulting 
solutions. This method generates high-quality solutions to the MLST problem, but running 
times are quite large (especially if the number of edges is high).

Xiong Y. (2005)  implemented the pilot  method of  Voss S.,  Cerulli  R.,  Fink A. and 
Gentili  M. (2005),  along with faster  simplified versions. Also,  these modified versions of 
MVCA focus on the first label added. In particular, after all of the labels have been sorted 
according to their frequencies from highest to the lowest, the first modified version tries only 
the most promising 10% of the labels at the first step. Afterwards, it runs MVCA to determine 
the remaining labels and then it selects the best of the  1 /  10 resulting solutions to go on 
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(where 1=|L| is the total number of colors and L is the set of possible labels for all edges). 
Compared with the original MVCA, this version can potentially reduce running time by about 
90%. However, since a higher frequency label may not always be the best place to start, it 
may not perform as well as MVCA.

A second modified version of  Xiong Y. (2005)  is similar to the previous one, except 
that it tries the most promising 30% of the labels at the first step. Then it runs MVCA to 
determine the remaining labels. This version has been shown to be between MVCA and the 
first  modified  version  of  Xiong  Y.  (2005)  with respect  to  accuracy  and  running  time. 
Moreover,  Xiong Y. (2005)  presented a modified version of GA, which competes with the 
best of the pilot methods (the first modified version) in terms of solution quality and nearly 
comparable to  the fastest  of  the pilot  methods in terms of  running time,  offering a good 
compromise with respect to accuracy and running time. 

The exact method is an A* or backtracking procedure to test the subsets of  L.  This 
search method performs a branch and prune procedure in the partial solution space based on a 
recursive procedure Test that test the possibilities of finding a better solution from the current 
partial  solution.  The main program that  solves the MLST problem needs to call  the  Test 
procedure to an empty set of labels.

Procedure Backtracking:
1. Let C ← ∅ be the initially empty set of used colors.
2. Let C* ← L be the global set of used colors.
3. Test(C).
4. Take an arbitrary spanning tree T of H* = (V, E(C*)).

Procedure Test(C):
if |C| < |C*| then 

if Comp(C) = 1 then
C* ← C.

else if |C| < |C*|–1 then
for each c ∈ (L–C) do

Test(C ∪ {c}).
  end for.

Algorithm 3. Exact algorithm for the MLST

Using an initial step that gets a good approximate solution C* (for instance, a solution 
found from any version of the MVCA) will improve the performance by reducing the number 
of tested sets. Another improvement that avoids the examination of a large number of partial 
solutions consists of rejecting every partial solution that can not be completed to get only one 
connected component. 

Note that if we are evaluating a partial solution C’ with a number of colors |C’|=|C*|–
2, we should try to add one by one all the colors to check if it is possible to find a better 
solution of C* with a smaller dimension, that is |C’|=|C*|–1. To complete a partial solution 
C’ with a number of colors |C’|=|C*|–2 and get a better solution |C’|=|C*|–1, we need to add 
a color with a frequency, at least, the actual number of connected components minus 1. 
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So,  if  the  frequency of  the  color  to  add is  not  greater  than  the  actual  number  of 
connected components minus 1, the partial solution can be rejected, speeding up the search 
process. 

3. CONSTRUCTIVE ALGORITHMS

In this section we propose several versions that combine in several ways the main 
ideas  used  in  constructive heuristics  for  the MLST;  the use  of  the number  of  connected 
components, the frequency of each labels and the pilot strategies.

1. Basic MVCA: This algorithm is the MVCA algorithm of Krumke S.O. and Wirth H.C. 
(1998) and takes into account the number of components when adding each label.

Basic MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C ← ∅ be the initially empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. Let Comp(C) be the number of connected components of H=(V,E(C)).
4. While H has more than one connected component:

4.1. Select the unused color c ∈ (L–C) that maximizes Comp(C  ∪ {c}).
4.2. Add label c to the set of used colors C: C ← C  ∪ {c}.
4.3. Update H - add all the edges of label c: EH  ← EH  ∪ E({c}).
end while.

5. Take an arbitrary spanning tree T of H.
Algorithm 4. Basic MVCA

2. QuickSort MVCA: This algorithm is the MVCA algorithm of Krumke S.O. and Wirth 
H.C. (1998) but it adds a sorting of the colors with respect to the general frequency of the 
colors. The general frequency of a color c is defined as the number of appearances, which is 
the number of edges with color  c in the graph. The sorting of the frequencies is carried out 
using  the  efficient  Quick  Sort.  This  sorting algorithm, due  to  C.A.R.  Hoare  (1961),  is  a 
divide-and-conquer  and  massively  recursive  procedure  (see,  for  instance  Sedgewick  R. 
(2001)). The algorithm consists of four steps: 

1. If there is one or fewer elements in the array to be sorted, return immediately;
2. Pick an element in the array to serve as a "pivot" point. (the left-most element in the 

array is used); 
3. Split the array into two parts - one with elements larger than the pivot and the other 

with elements smaller than the pivot; 
4. Recursively repeat the algorithm for both halves of the original array. 

The worst-case computational time of the Quick Sort O(n2) but it is O(n log n) in average-case 
with a very good practical performance. 
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QuickSort MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C ← ∅ be the empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. Let Comp(C) be the number of connected components of H=(V,E(C)).
4. Sort the colors in L in decreasing order with respect to the general frequency, 

using the Quick-Sort algorithm.
5. While H has more than one connected component:

5.1. Select an unused color c ∈ (L–C) as follows: 
5.1.1. Let Comps* = Comp(C).
5.1.2. for each i ∈ (L–C) in the sorted order do

if Comp(C  ∪ {i}) < Comps* then
then c = i; Comps* = Comp(C  ∪ {c}).

         end for.
5.2. Add label c to the set of used colors C: C ← C  ∪ {c}.
5.3. Update H - add all the edges with label c: EH  ← EH  ∪ E({c}).
end while.

6. Take an arbitrary spanning tree T of H.
Algorithm 5. QuickSort MVCA

3. Frequency MVCA: This algorithm is a MVCA version that does not perform any initial 
ordering of the colors with respect to the general frequency, as the Basic MVCA. As with the 
QuickSort MVCA algorithm, it proceeds, by adding at each step, a color minimizing the total 
number of connected components in the subgraph. The difference is that when more colors 
give the same number of connected components, it will add the one with the highest general 
frequency value.

Frequency MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C ← ∅ be the empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. Let Comp(C) be the number of connected components of H=(V,E(C)).
4. Get the general frequency of every color i by fr(i), for all i∈L.
5. While H has more than one connected component:

5.1. Select an unused color c ∈ (L–C) as follows: 
5.1.1. Let Comps* = Comp(C), fr* = 0.
5.1.2. for each i ∈ (L–C) do

if (Comp(C  ∪ {i}) < Comps*) then
c = i;  Comps*= Comp(C  ∪ {c}); fr* = fr(c).

if (Comp(C  ∪ {i}) = Comps*) and (fr(i) > fr*) then
c = i; fr* = fr(c).

        end for.
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5.2. Add label c to the set of used colors C: C ← C  ∪ {c}.
5.3. Update H - add all the edges with label c: EH  ← EH  ∪ E({c}).
end while.

6. Take an arbitrary spanning tree T of H.
Algorithm 6. Frequency MVCA

4. Random MVCA: This is a MVCA version that also does not perform any initial ordering 
of  the  colors  with  respect  to  the  general  frequency,  as  the  Basic  MVCA.  As  usual,  the 
algorithm proceeds,  by adding at  each step,  the color that minimizes the total  number of 
connected components in the subgraph. The difference is that when more than one color gives 
the same number of connected components, it will add one of them randomly.

Random MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C ← ∅ be the initially empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. Let Comp(C) be the number of connected components of H=(V,E(C)).
4. While H has more than one connected component:

4.1. Select an unused color c ∈ (L–C) as follows: 
4.1.1. Let Comps* = Comp(C) and C* ← ∅.
4.1.2. for each i ∈ (L–C) do

if (Comp(C  ∪ {i}) = Comps*) then
C* ← C* ∪ {i}.

if (Comp(C  ∪ {i}) < Comps*) then
C* ← {i}; Comps* = Comp(C  ∪ {i}).

   end for.
4.1.3. Choose at random a color c in C*.

4.2. Add the label c to the set of used colors C: C ← C  ∪ {c}.
4.3. Update H - add all the edges with label c: EH  ← EH  ∪ E({c}).
end while.

5. Take an arbitrary spanning tree T of H.
Algorithm 7. Random MVCA 

5. Multiple-Random MVCA: As in Random MVCA, at each step the method randomly adds 
the color that minimizes the total  number of connected components in the subgraph. The 
difference is that the method runs  N (N = 50 in our examples) times for each instance and 
keeps the best found solution (C*).

Multiple-Random MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C’ ← L be the global set of used colors.
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2. Let H’=(V,E(C’)) be the subgraph of G restricted to V and the edges with 
labels in C’, where E(C’) = {e∈E: L(e)∈C’}.

3. Repeat N times steps 4 to 8: 
4. Let C ← ∅ be the initially empty set of used colors for each repetition.
5. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
6. Let Comp(C) be the number of connected components of H=(V,E(C)).
7. While H has more than one connected component:

7.1. Select an unused color c ∈ (L–C) as follows: 
7.1.1. Let Comps* = Comp(C) and C* ← ∅.
7.1.2. for each i ∈ (L–C) do

if (Comp(C  ∪ {i}) = Comps*) then
C* ← C* ∪ {i}.

if (Comp(C  ∪ {i}) < Comps*) then
C* ← {i}; Comps* = Comp(C  ∪ {i}).

end for.
7.1.3. Choose at random a color c in C*.

7.2. Add the label c to the set of used colors C: C ← C  ∪ {c}.
7.3. Update H - add all the edges with label c: EH  ← EH  ∪ E({c}).
end while.

8. if |C| < |C’| then 
C’ ← C; H’← H.

9. Take an arbitrary spanning tree T of H’ = (V,E(C’)).
Algorithm 8. Multiple-Random MVCA

6. Random-Frequency MVCA. In this version, at each step the algorithm adds the color 
which minimizes the total number of connected components in the subgraph. If more than one 
color gives the same number of connected components, it will add the one with the highest 
general frequency value. In the case of more than one color producing an equal number of 
connected components and with the same general frequency value, the algorithm will add one 
of them randomly.

Random-Frequency MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C ← ∅ be the initially empty set of used colors.
2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with labels 

in C, where E(C) = {e∈E: L(e)∈C}.
3. Let Comp(C) be the number of connected components of H=(V,E(C)).
4. Get the general frequency of every color i by fr(i), for all i∈L.
5. While H has more than one connected component:

5.1. Select an unused color c ∈ (L–C) as follows:
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5.1.1. Let Comps* = Comp(C), C* ← ∅ and fr* = 0.
5.1.2. for each i ∈ (L–C) do

if (Comp(C  ∪ {i}) < Comps*) then
C* ← {i}; Comps* = Comp(C  ∪ {i}); fr* = fr(i).

if (Comp(C  ∪ {c}) = Comps*) and (fr(i) > fr*) then
C* ← {i}; Comps* = Comp(C  ∪ {i}); fr* = fr(i).

if (Comp(C  ∪ {c}) = Comps*) and (fr(i) = fr*) then
C* ← C* ∪ {i}.

end for.
5.1.3. Choose at random a color c in C*.

5.2. Add the label c to the set of used colors C: C ← C  ∪ {c}.
5.3. Update H - add all the edges with label c: EH  ← EH  ∪ E({c}).
end while.

6. Take an arbitrary spanning tree T of H.
Algorithm 9. Random-Frequency MVCA 

7. Pilot-First MVCA  (Voss S.,  Cerulli R.,  Fink A. and Gentili  M., 2005):  This modified 
version of MVCA focuses on the first label to add. It tries each label at the first step and then 
applies  MVCA in a  greedy fashion from then on,  i.e.  adding at  each step the color  that 
minimizes the total number of connected components and stopping when the resulting graph 
is connected. Then it selects the best of the |L|  =  l resulting solutions as the output of the 
method. If the number of labels is large, we expect this algorithm be quite time-consuming.

Pilot-First MVCA Algorithm:
Input: A labeled graph G = (V,E,L), with n vertices, m edges, and 1 labels.
Output: A spanning tree T.
1. Let C’ ← L be the global set of used colors.
2. Let H’=(V,E(C)) be the subgraph of G restricted to V and the edges with 

labels in C’, where E(C’) = {e∈E: L(e)∈C’}. 
3. for each i∈L do 

3.1. Let C ← {i} be the initial set of used colors for each iteration.
3.2. Let H=(V,E(C)) be the subgraph of G restricted to V and the edges with 

labels in C, where E(C) = {e∈E: L(e)∈C}.
3.3. Let Comp(C) be the number of connected components of H=(V,E(C)).
3.4. While H has more than one connected component:

3.4.1. Select the unused color c∈(L–C) that maximizes Comp(C ∪{c}).
3.4.2. Add label c to the set of used colors C: C ← C  ∪ {c}.
3.4.3. Update H - add all the edges of label c; EH  ← EH  ∪ E({c}).
end while.

3.5. if |C| < |C’| then 
C’ ← C; H’← H.

   end for.
4. Take an arbitrary spanning tree T of H’ = (V,E(C’)).

Algorithm 10. Pilot-First MVCA 
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8. Pilot-Each-Step MVCA:  The difficulty with the classical version of MVCA is when it 
finds more than one color with same resulting number of connected components. A question 
arises on which of these colors should be chosen.  To find the best  possible  solution that 
MVCA can give, we alternatively add each of these possible colors, continuing after the same 
strategy to the resulting subgraph. Every possible local choice is computed in this way and all 
the possible solutions MVCA may give are evaluated. The best result is selected. So no other 
MVCA version can give a better result than this variation of MVCA, because it visits all the 
solutions that every MVCA version can produce. Obviously, it is the slowest MVCA method 
and, if the number of labels is large, it will be quite time-consuming.

This method can be implemented as an A* or backtracking algorithm constrained to 
the colors that reach the same minimal number of connected components at each step. This 
search can be implemented using a modified version of the recursive procedure Test used in 
the exact A* or Backtracking algorithm. This modified version of the procedure Test just tries 
to  add  each  of  the  colors  with  the  same  minimum  number  of  connected  components. 
Moreover, the main program that implements the Pilot-Each-Step MVCA also applies the Test 
procedure to the empty set.

Procedure Pilot-Each-Step MVCA:
1. Let C ← ∅ be the initially empty set of used colors.
2. Let C* ← L be the global set of used colors.
3. Test(C).
4. Take an arbitrary spanning tree T of H* = (V, E(C*)).

Procedure Test(C):
if |C| < |C*| then

if Comp(C) = 1 then
C* ← C.

else if |C| < |C*|–1 then
C* ← ∅; Comps* = n.
for each c ∈ (L–C) do

if Comp(C ∪{c}) = Comps* then 
C* ← C* ∪ {c}.

if Comp(C ∪{c}) < Comps* then
C* ← {c}; Comps* = Comp(C ∪{c}).

  end for.
for each c ∈ C* do

Test(C ∪ {c}).
  end for.

Algorithm 11. Pilot-Each-Step MVCA 

9. Pilot-Total MVCA: This method is the union of the previous two algorithms: Pilot-First  
MVCA and  Pilot-Each-Step MVCA. It tries each label at the first step and then applies the 
Pilot-Each-Step MVCA method from there on, i.e. adding at each step alternatively all of the 
colors having the same minimum number of connected components and stopping when the 
resulting graph is connected. In this way, for each color added as the first one, every possible 
local choice is evaluated. The best result is recorded as output of the Pilot-Each-Step MVCA 
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method and it represents the best possible solution MVCA can produce given the first color 
chosen. Afterwards, this procedure is repeated for a different color added in the first position, 
until all the possibilities are exhausted. Then the method will select the best of the |L|  =  l 
resulting solutions as the output of the method. Obviously, it is the more time-consuming 
method compared to the others analyzed so far.

This method can also be implemented as an A* or backtracking algorithm where the 
color included, except for the first color, is constrained to the colors that reach the minimal 
number of connected components. This search can be implemented using the same recursive 
procedure  Test used in the  Pilot-Each-Step MVCA algorithm, but with a main program that 
starts  with  every  unitary  set  of  colors  instead  of  the  empty  set.  This  main  program that 
implements the Pilot-Total MVCA heuristic is shown below on Algorithm 12.

Procedure Pilot-Total MVCA:
1. Let C ← ∅ be the initially empty set of used colors.
2. Let C* ← L be the global set of used colors.
3. for each c ∈ L do

3.1. C ← {c}.
3.2. Test(C).

4. end for.
5. Take an arbitrary spanning tree T of H* = (V, E(C*)).

Algorithm 12. Pilot-Total MVCA

4. EXPERIMENTAL TESTS

In this section, the results of several heuristics are compared to the exact solution found 
via backtrack search. 

Different sets of instances of the problem have been used in order to evaluate how the 
algorithms are influenced by the parameters, the structure of the network and the distribution 
of the labels on the edges. The parameters considered are: 

m: total number of edges of the graph;
n: total number of nodes of the graph;
l: total number of colors assigned to the edges of the graph. 

The number of vertices and colors are chosen between 20 and 50 with step 10. The 
number of edges is obtained indirectly from the density d of edges whose values are chosen to 
be 0.8, 0.5, 0.2. The density d is the number of edges in the graph divided by the number of 
possible edges, i.e. that of the complete graph is  n(n–1)/2. The number of edges from the 
number of vertices and the density is obtained by m = d·n(n–1)/2. The considered scenarios 
are n = l = 20, 30, 40, 50, and d = 0.8, 0.5, 0.2, for a total of 12 scenarios. For each scenario 
we use 10 different randomly generated instances. We thank authors of (Cerulli R., Fink A., 
Gentili  M. and Voss S., 2005), who kindly provided data for use in our experiments. Are 
results are therefore directly comparable with their results. 
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Tables 1 and Table 2 show the results obtained with the nine proposed versions of the 
MVCA, identified with the labels: 1)  Basic MVCA (B-MVCA), 2) QuickSort MVCA (Q-
MVCA),  3)  Frequency MVCA (F-MVCA),  4)  Random MVCA (R-MVCA),  5)  Multiple-
Random MVCA (MR-MVCA), 6) Random-Frequency MVCA (RF-MVCA), 7) Pilot-First 
MVCA (P1-MVCA), 8) Pilot-Each-Step MVCA (PS- MVCA) and 9) Pilot-Total MVCA (PT-
MVCA)   Table  1  includes  the  average  objective  values  among the  10  instance  for  each 
combination of the parameter and each algorithm. In the first row we find the optimal value 
obtained with the backtracking. Table 2 includes the corresponding average values of the 
computational time in milliseconds. 

Table 1. Average objective Values

Table 2. Computational times (milliseconds)

5. CONCLUSIONS

We have considered the design of constructive heuristics for the minimum labelling spanning 
tree  problems.  The maximum  vertex  covering  algorithm (MVCA)  is  wrong  but  several 
corrected versions can reach very good solutions in a very short computational time. Among 
the different strategies implemented the best effectiveness is shown by the P1-MVCA and 
PT-MVCA based on the Pilot Method but with a high time consuming. In the other side, the 
F-MVCA and RF-MVCA has also good, but not so optimal, effectiveness with much less 

n = l = 20 n = l = 30 n = l = 40 n = l = 50
Density: 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2

Exact  
Method

2.
4

3.
1

6.
7

2.
8

3.
7

7.
4

2.
9

3.
7

7.
4

3.
0

4.
0

8.
6

1. B-MVCA 2.6 3.5 7.1 2.8 3.8 7.8 2.9 4.1 8.6 3.0 4.2 9.4
2. Q-MVCA 2.6 3.5 6.9 2.8 4.0 7.9 2.9 3.9 8.2 3.0 4.4 9.6
3. F-MVCA 2.6 3.5 7.0 2.8 3.9 7.9 2.9 3.9 8.1 3.0 4.4 9.5
4. R-MVCA 2.5 3.6 6.9 2.8 3.9 7.8 2.9 4.2 8.4 3.0 4.3 9.4
5. MR-MVCA 2.5 3.5 6.7 2.8 3.7 7.4 2.9 3.9 7.7 3.0 4.2 8.6
6. RF-MVCA 2.5 3.6 6.9 2.8 4.0 7.8 2.9 3.9 8.0 3.0 4.4 9.5
7. P1-MVCA 2.4 3.2 6.7 2.8 3.7 7.4 2.9 3.7 7.6 3.0 4.1 8.6
8. PS-MVCA 2.5 3.5 6.7 2.8 3.7 7.4 2.9 3.9 7.7 3.0 4.2 8.6
9. PT-MVCA 2.4 3.1 6.7 2.8 3.7 7.4 2.9 3.7 7.5 3.0 4.1 8.6

n = l = 20 n = l = 30 n = l = 40 n = l = 50
Density: 0.8 0.5 0.2 0.8 05 0.2 0.8 0.5 0.2 0.8 0.5 0.2
Exact  
Method 0 0 0.01

1 0 0 0.13
8

0.00
2

0.00
3

1.00
2

0.00
3

0.01
9

62.72
8

1. B-MVCA 0.0 0.0 1.5 0.0 0.0 1.6 0.0 0.0 0.0 3.0 1.6 0.0
2. Q-MVCA 0.0 0.0 0.0 0.0 0.0 0.0 3.1 1.6 0.0 4.7 0.0 0.0
3. F-MVCA 0.0 0.0 0.0 0.0 1.5 0.0 0.0 1.6 0.0 0.0 0.0 1.5
4. R-MVCA 0.0 1.6 3.1 1.5 0.0 7.8 1.5 4.6 3.2 3.1 0.0 4.7
5. MR-MVCA 7.9 6.3 6.2 15.6 12.4 11.0 29.7 18.8 15.7 34.5 37.5 28.1
6. RF-MVCA 0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.5 3.1 1.6 0.0 0.0
7. P1-MVCA 0.0 1.6 1.6 7.8 7.7 4.8 17.3 1.7 14.1 32.9 31.2 25.0
8. PS-MVCA 0.0 0.0 4.8 0.0 1.6 6.2 1.6 4.9 20.3 3.1 0.0 25.0
9. PT-MVCA 0.0 0.0 3.6 4.8 17.2 65.7 15.6 14.0 137.5 3.1 26.6 321.0
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computational  time.  In  an  intermediate  situation  is  PS-MVCA.  The  future  research  will 
consist  in improving the procedures, testing with larger instances, and testing their use to 
generate initial solutions for other metaheuristics as VNS.
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