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Abstract. We address the problem for finding the K best point-to-point simple paths connecting a given pair of 

nodes in a directed network with arbitrary lengths and without directed cycle. The main result in this paper is the 

proof that a tree representing the kth point-to-point shortest simple path can be obtained by a single T-exchange 

from at least one of the previous (k-1) trees representing each one of the previous (k-1) best point-to-point 

shortest simple paths. Consequently, we design an O( log ( log )+ + +
Km n n K n
n

) time and O(K+m) space 

algorithm to determine explicitly the K point-to-point shortest simple paths in a directed network with n nodes, 

m arcs and without directed cycles. The algorithm does not require complicated data structures and its 

implementation becomes easy. 

 
Categories and Subjecy Descriptors: G.2.2. [Discrete Mathematics]: Graph Theory-Networking 

General terms: Algorithms, Design, Theory. 

Additional Key Words and Phrases: Point-to-point Shortest paths, K best solutions. 

 
1. Introduction. 

 

The point-to-point simple shortest path (PPSSP) problem in a directed network of n nodes 

an m arcs with arbitrary lengths on the arcs finds a shortest length path from a source node to 

a sink node or in detects a cycle of negative length. Many important real cases where this 

problem appears and numerous algorithms to solve it are addressed in Ahuja et al. [1] for 

example. 

In this paper, we consider the K point-to-point shortest simple paths problem as the 

problem to determine the K best solutions of the PPSSP problem. The problem to determine 

the K shortest paths in a network has a wide range of applications (see Eppstein [3] for 

example). In particular, we suppose that the network does not contain a directed cycle. In this 

case, a clasical aplication is the determination of the K best critical path in PERT graph. Many 

of the applications included in Eppstein [3] use a directed acyclic graph (DAG). We 

chronologically cite the papers of the literature considering the K shortest simple paths 

problem: Hoffman and Pavley [7], Pollack [13], Yen [15] and [16], Lawler [9], Katoh et al. 

[8], Perko [12], Brander and Sinclair [2], Martins et al. [11], Hadjiconstantinou and 
This research has been partially supported by Spanish Government Research Project MTM2006-10170. 
 
 
 



Chirstofides[5], Martins and Pascoal [10] and Hersberger et al. [6]. The best bound to solve 

this problem in directed networks is reached in the early paper of Yen [15]. Yen’s [15] 

algorithm in a directed acyclic network runs in  time where the term O(  is the 

best bound to solve the PPSSP problem. This algorithm requires O( ) memory space. 

Moreover, the algorithm of Hershberger et al. [6] correctly computes the K best solutions in 

 time and O(Kn+m) space on acyclic networks. The K point-to-point shortest paths 

problem in which paths are not required be simple are easier. The best algorithm for this 

problem is due to Eppstein [3]. The algorithm of Eppstein [3] compute a implicit 

representation of the K paths in O(

O( )Knm )m
2Kn m+

O( )Km

logm n n K+ + ) time and O(K+m) space. Each path can be 

output in order in O( logn K+ ) additional time where the first term refers to a bound on the 

arcs in the path and the second refers to obtain the K best path. That is, the K shortest path can 

be enumerated in order by Eppstein [3] algorithm in O( log ( log )m n n K n K+ + + ). Clearly, 

the algorithm of Eppstein [3] can be used to determine the K point-to-point shortest simple 

paths in a network without directed cycle since any path in acyclic network is a simple path. 

An extended bibliography of several K best shortest path problems due to Eppstein is 

available at <http://www.ics.edu/~eppstein/bibs/kpath.bib>.  

In this paper, we prove that the kth best solution is obtained from one of the previous best 

solutions by a T-exchange between a tree arc and a non- tree arc of the associated best 

solution in acyclic networks. This results let us design an algorithm running in 

O( log ( log )Km n n K n
n

+ + + ) time and requiring O(K+m) memory space. The algorithm 

determines in order each best simple path. For that the set of non-tree arcs are sorted by its 

reduced cost and K vectors with O(K) space overall are used to determine in O( log Kn
n

+ ) 

time the next best solution. It is clear that the introduced algorithm significantly improves the 

early time and space bounds of Yen [15] and the bounds of Hershberger et al. [6] for directed 

networks. Clearly the running time of our algorithm also improves the Eppstein [3] algorithm 

wherever K > n, otherwise, both algorithms have the same running time. Moreover, our 

algorithm does not use complicated data structures and, therefore, its implementation in a 

high-level language programming becomes easy. 

After this introduction, in section 2, the linear programming formulation of the PPSSP 

problem and the K point-to-point shortest simple path problem are given. In section 3, we 

introduce the theoretical main results, which the algorithm is based on. Section 4 contains a 
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detailed pseudo code and an explanation of the proposed algorithm. Additionally, the worse 

case time and space theoretical complexity of the algorithm is proven.  

 
2. The point-to-point shortest simple path problem and the K point-to-point 
shortest simple paths problem. 
 

Given a directed network G = (V, A), let { }nV ,...,1=  be the set of n nodes and A be the set 

of m arcs. For each arc , let Aji ∈),( ∈ijc  be its length and { }max ( , )
max iji j A

C
∈

= c . The network 

has two distinguished nodes: the source node s and the sink node t. We denote by 

{ }| ( , )i j V j i A−Γ = ∈ ∈  for all node i V∈ . We suppose without lost of generality that the 

directed network G does not contain any arc emanating from node sink t. Note that in any 

case, a simple path from s to t does not use arcs emanating from t. Thus, we can simply ignore 

them. 

 

Assumption 1. The network contains a directed path from source node s to any non-source 

node . When this condition is not true for some node i, this node is eliminated from G 

since any s-t path in G does not contain node i. 

∈i V

 

Let  be two distinct nodes of G = (V, A), we define a simple path ,i j V∈ ijp  as a sequence 

{ }1 1 2 2 1 1, ( , ), , , , ( , ),l l l li i i i i i i i− −  of non-repeated nodes and arcs satisfying ,  and for 

all , . A directed simple cycle is a simple path such that the only 

repeated nodes are  and (

1i i= li = j

1 1w l≤ ≤ − 1( , )w wi i A+ ∈

1i li iip ). The length of a directed path p is the sum of the arc lengths 

in the path, that is, . The point-to-point shortest simple path (PPSSP) problem 

consists in finding a shortest length simple path from node s to node t or in determining a 

negative cycle, that is, a directed cycle of negative length. Now, we suppose that the network 

does not contain a directed cycle. In this case we have an acyclic network. Moreover, the 

directed network G does not contain any arc arriving at node source s. Otherwise, G contains 

a directed cycle. 

( , )

( ) ij
i j p

c p c
∈

= ∑

If a flow  is associated with each arc  then the following linear programming 

problem represents the PPSSP problem (see Ahuja et al. [1]): 

ijx ),( ji
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{ }
{ }

{ }
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:( , ) :( , )
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1     if 

         0    if ,        (2)
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i s
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i t
x

∈

∈ ∈

=
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⎪− = ∀ ∈ −⎨
⎪− =⎩

≥

∑

∑ ∑

             ( , )                           (3)i j A∀ ∈

 

The above problem is an especial case of the minimum cost network flow (MCNF) 

problem. The network simplex algorithm can be used to solve the above problem taking 

advantage of the fact that any basis of the MCNF problem is a spanning tree T  of G. Let 

X be the convex polyhedron defined by constraints (2)-(3) (decision space). Next two 

literature results holds (Ahuja et al. [1]): (i) Any feasible solution of the PPSSP problem is a 

vertex of X and vice-versa and (ii) Every vertex of X is associated with a directed spanning 

tree rooted at s. 

A⊆

A directed out-spanning tree is a spanning tree rooted at node s such that the unique path 

in the tree from node root s to every other node is a directed path. Note that in this kind of 

tree, each node { }\i V s∈  has only one node predecessor in the tree ( )( )ipred T , that is, its in-

degree is one. In the rest of paper, we refer to a directed out-spanning tree as tree. We also 

define ( )iD T  to be the set of descendants of node i in the tree T, that is, the set of nodes in the 

sub-tree rooted at i, including node i. 

The distance labels of the nodes corresponding to a tree T are obtained by setting 

 and solving , ( ) 0sd T = ( ) ( ) 0ij i jc d T d T+ − = ( , )i j T∀ ∈ . Thus, given a tree T, we define the 

reduced cost ( ) ( ) ( )ij ij i jc T c d T d T= + − , ( , )i j A∀ ∈ . 

Let  be the objective function value of the tree T. Moreover, 

. Therefore, minimize  is equal to find the shortest simple path from 

node s to node t. Additionally, since each node 

( , )
( ) ij ij

i j T
C T c x

∈

= ∑

( ) ( ) ( )tc x d T C T= = ( )c x

{ }\j V s∈  has only one node predecessor, we 

define ( )( )
jj pred T jx T x= . Note that if ( , )i j T∈  and ( )jt D T∈ , then  and 1ijx = ( ) 1jx T = , 

otherwise, if and  then ( , )i j T∈ ( )jt D T∉ 0ijx =  and ( ) 0jx T = .  

In a T-exchange, an arc ( ,  with reduced cost ) \i j A T∈ ( )ijc T  and ( )ji D T∉ is added to T 

and ( ( ),j )pred T j  is deleted from T yielding a new tree T ′ . Moreover, any arc  

satisfies  since network is acyclic. Once a T-exchange is performed, the distance 

( , ) \i j A T∈

( )ji D T∉
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labels in T  are updated in the following way: ′ ( ) ( ) ( )k k ijd T d T c T′ = + , . 

Furthermore, the objective function value is 

( )jk D T∀ ∈

( ) ( ) ( ) ( )t t ij jd T d T c T x T′ = +  since ( ) ( )j jx T x T ′= .  

For an optimal tree , we obtain the following optimality conditions: *T
*( ) 0,  ( , )ijc T i j A≥ ∀ ∈ . 

The K point-to-point shortest simple paths problem consists in determining the K best 

different solutions of the problem (1)-(3). In other words, if we denote by ( )stp T  the path tree 

from node s to node t in the tree T then, the problem requires to identify the K best tree  

with different 

kT

( )k
stp T  for { }1,...,k ∈ K  such that 1 2( ) ( ) ... ( )K

t t td T d T d T≤ ≤ ≤  and for any 

other tree  with pT ( ) (p
st st )kp T p T≠  for all { }1,...,k K∈  is . ( ) ( )p K

t td T d T≥

 

3. Main Theoretical Results. 
 

In this section, we introduce and prove the basic results to the efficient resolution of the K 

point-to-point shortest simple path problem. For that, we recall the following definition: 

 

Definition 1. Two tree T and T  are adjacent if and only if both have  arcs in common, 

that is, both trees differ in only one arc. 

′ 2n−

 

Therefore, the tree T  can be built from the tree T by a T-exchange where the entering arc 

is just the arc ( ,

′

) \i j T T′∈  and ( , ) \p q T T ′∈  is the leaving arc. In addition, if the path tree 

from node s to node t in T  must be different to the path tree from node s to node t in T, then 

the entering arc ( ,

′

) \i j T T′∈  must satisfies that ( ) 1jx T = , that is, node j must belong to the 

path tree from node s to node t in T. Therefore all alternative path from s to t obtained from T 

must use a non tree-arc ( ,  with ) \i j A T∈ ( ) 1jx T =  and ( )ji D T∉ . But, since G does not 

contain directed cycle, the suffcient condition is a non tree-arc ( , ) \i j A T∈  with ( ) 1jx T = . 

Moreover, let T and T ′  be two trees that differ in the p n<  arcs. Then the following property 

given in Sedeño-Noda and González-Martín [14] holds: 

 

Proposition 1. If T and T differ in p < n arcs, where E = { ,…, } are the arcs in 

 that are not in T, then: (1) E does not contain a directed cycle; (2) 

′ 1 1( , )i j ( , )p pi j

T ′ u vj j≠  holds for all 
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{ }, 1,...,u v p∈  with u v≠ ; (3) These arcs define the smallest T-exchange sequence to obtain 

 from T, and the order in which these T-exchanges are performed is irrelevant.. T ′

 

Given any tree T, we call a multiple T-exchange to the operation where p < n arcs 

satisfying proposition 2 are entered simultaneously in T. Now, we can prove that: 

 

Lemma 1. Given a tree T, let T  be the tree containing a different path tree from node s to 

node t that is obtained from T by making a multiple T-exchange with the arcs 

′

( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  with non-negative reduced cost and with 2 p n≤ < . Then ( )td T ′  is 

greater than or equal to the distance label of the node t of at least one of the p trees that can 

be obtained by a T-exchange with only one arc in the set ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j . 

 

Proof. Note that since T  contains a different path tree from node s to node t, at least an arc 

 in the set 

′

( , )r ri j ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  satisfying ( ) 1
rj

x T =  must exist. Thus, le us first 

consider that the arcs in the set ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  satisfy that  and 
1
( ) 1jx T = 0

uj
x =  

for all { }2,...,u∈ p . Then, if T  is the obtained tree by a multiple T-exchange, it is easy to 

prove that 

′

1 1 1
( ) ( ) ( ) ( )t t i j jd T d T c T x T′ ≥ + . Note that in T ′ , 

1 1
( ) ( )

1 1j id T d T ci j′ ′= + . Moreover, 

 since all entering arc has non-negative reduced cost. Thus, 
1 1
( ) ( )i id T d T′ ≥

1 1
( ) ( )

1 1j id T d T c′ ≥ + i j . Additionally, ( ) ( )u ud T d T′ =  for all node u in the path tree from node s 

to node 
1
( )jpred T  in T (or T ). Therefore, the increase in the distance label of any node 

hanging of node 

′

1j  in  equals the increase in the distance label of node T ′ 1j , that is, 

1 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( )j j i i j j i jd T d T d T c d T c T′ − ≥ + − ≥ . Thus, 

1 1
( ) ( ) ( )t t i jd T d T c T′ − ≥ . But, if T ′′  is 

the tree obtained from T by making a single T-exchange with the entering arc  then, we 

have that 

1 1( , )i j

( ) ( ) ( )
r rt t i jd T d T c T′′ = + . In other words, the tree T ′′  has a distance label for node t 

less than or equal to the distance label of node t in any tree obtained making a multiple T-

exchange with any subset of arcs in ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  containing the arc . 

Therefore, now we consider that all arc in the set 

1 1( , )i j

( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  satisfies 

 for all ( ) 1
uj

x T = { }1,...,u p∈ . Let rj  be the node with major depth in the tree among the 
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nodes uj  with { }1,...,u∈ p . In this case, it is clear that the tree T ′  obtained from T by making 

a multiple T-exchange with arcs ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  satisfies ( ) ( ) ( )
r rt t i jd T d T c T′ ≥ +  

since node rj  belongs to the path tree ( )stp T ′ . But, if T ′′  is the tree obtained from T by 

making a single T-exchange with the entering arc  then, we have that ( , )r ri j

( ) ( ) ( )
r rt t i jd T d T c T′′ = +  and , therefore, the lemma holds.  ( ) ( )t td T d T′ ≥ ′′

 

Lemma 1 does not hold for directed network containing directed cycle because any 

alternating s-t path could use a non tree-arc ( , ) \i j A T∈  with ( ) 1jx T =  and . ( )ji D T∈

Given a tree T, we denote by ( )A T  a subset of arcs of A\T and 

{ }( ( )) | ( , ) ( )i A T j V j i A T−Γ = ∈ ∈  (the set of predecessor nodes of node i in the directed graph 

(V, ( )A T ). Then we define { }( ) ( , ) ( )
( , ) arg min ( ) :  ( ) 1A T ul lu l A T
i j c T x T

∈
= = . We only consider in the 

previous minimum arcs  such that ( , )u l ( ) 1lx T =  because a single T-exchange with any of 

these arcs allow us to obtain a different path tree from node s to node t in the new tree. Let 

be the tree obtained from T by making a T-exchange with the arc , then 

from lemma 1, T  is the second best solution of the PPSSP problem in the acyclic network 

G=(V, 

T ′ ( )( , ) ( )A Ti j A T∈

′

( )A T T∪ ). We obtain the next result: 

 

Lemma 2. Given a tree T, with a set of arcs  with non-negative reduced cost. Let T( )A T ′ be 

the tree obtained from T by making a T-exchange with the arc ( )( , ) ( )A Ti j A T∈ . Then any arc 

 in the set ( , )u l { }( )( ) ( ) ( , )A TA T A T i j′ = −  satisfying ( )ju D T∈  or ( )jl D T∉  or  has 

a non-negative reduced cost with respect to the tree T

( ) 1lx T =

′ . 

 

Proof. Given a tree T, when a T-exchange is made with the entering arc 

 obtaining the tree T( )( , ) ( , ) ( )A Ti j i j A T= ∈ ′ , only the distance labels of the nodes in ( )jD T  

increase by , ( )i jc T . We must consider the next cases to verify the sign of each arc ( ,  in )u l

{ }( ) ( ) ( , )A T A T i j′ = − : 

Case 1) if  and  or ( )ju D T∈ ( )jl D T∈ ( )ju D T∉  and ( )jl D T∉  then, we have 

 and therefore ( ) ( ) ( ) ( )u l u ld T d T d T d T′ ′− = − ( ) ( ) 0ul ulc T c T′ = ≥ . 
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Case 2) if  and  then  ( )ju D T∈ ( )jl D T∉

( ) ( ) ( ) ( ) ( ) ( )ul ul u l ul u ij lc T c d T d T c d T c T d T′ ′ ′= + − = + + − ( ) ( ) 0ul ijc T c T= + ≥ . 

Case 3) if  and  then ( )ju D T∉ ( )jl D T∈

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ul ul u l ul u l ij ul ijc T c d T d T c d T d T c T c T c T′ ′ ′= + − = + − − = − . 

We must distinguish two sub-cases: Sub-case 3.1) if ( ) ( ) 1l jx T x T= =  then since 

{ }( ) ( ) ( )
( , ) arg min ( ) :  ( ) 1A T ul lul A T
i j c T x T

∈
= =  and ( ) ( ) 1l jx T x T= =  then 

( ) ( ) 0ul ijc T c T− ≥ . Sub-case 3.2) if ( ) 0lx T =  then only we can conclude that 

( ) ( ) ( )ul ul ijc T c T c T′ = − . 

Therefore, any arc  in the set ( , )u l ( )A T ′  with ( )ju D T∈  or ( )jl D T∉  or  has ( ) 1lx T =

( ) 0ulc T ′ ≥ .  

 

We are interested in generate the K best point-to-point shortest simple paths in order 

without repeating the calculation of the same best solution. For that, given a tree T, the 

entering arc { }( ) ( , ) ( )
( , ) arg min ( ) :  ( ) 1A T ul lu l A T
i j c T x T

∈
= =  and the tree T ′  obtained by making a T-

exchange with the entering arc , we set: ( , )i j { }( ) ( ) ( , )A T A T i j= −  and 

{ }( ) ( , ) \ : ( ) and ( )j jA T u l A T u D T l D T′ ′= ∈ ∉ ∉ . Note that ( )A T ′  does not contain any 

incoming arc in any descendant node of node j belonging to ( )stp T ′ . Therefore, any tree 

obtained from T  subsequently contains the same sub-path from node i to node t. In addition, 

any tree obtained from T does not contain the sub-path from node i to node t. From these 

comments, it is easy prove that each best solution is obtained once time. The reason of the 

definition of the set of arcs 

′

( )A T ′  is given by the next result: 

 

Lemma 3. Let  be a tree obtained from T by a T-exchange with the arc . If we 

decided to fix the tree path from i to t then, we must set 

T ′ ( , )i j

{ }( ) ( , ) \ : ( ) and ( )j jA T u l A T u D T l D T′ ′= ∈ ∉ ∉ . 

Proof. Given a tree T, when a T-exchange is made with the entering arc 

 obtaining the tree T( )( , ) ( , ) ( )A Ti j i j A T= ∈ ′ , only the distance labels of the nodes in ( )jD T  

are modified as indicated in proof of lemma 2. Suppose, that we maintains in ( )A T ′  some arc 
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( , )u l  with . If this arc belongs to an alternative path from s to t then, a path ( )jl D T∈ llp ′ from 

l to a node  must exist in G. Now we consider two cases: (1) if  then the 

sub-path  does not contain the sub-path 

( )stl p T′∈ ′ ( )jl D T′∈

( , ) ( )ll l tu l p p T′ ′ ′∪ ∪ ( )itp T ′ . Therefore, the arc  

must not be included in 

( , )u l

( )A T ′ . (2) if ( )jl D T′∉  then, we have a directed cycle 

( ) ( )ll l j jlp p T p T′ ′ ′∪ ∪ ′ . Clearly, this situation is not possible and, therefore, a path llp ′  from l 

to a node  and  can not exist. Therefore, the arc  is not required to 

be included in 

( )stl p T′ ′∈ ( )jl D T′∉ ( , )u l

( )A T ′ . 

Similarly, suppose, that we maintains in ( )A T ′  some arc ( ,  with . If this arc 

belongs to an alternative path from s to t then, a path 

)u l ( )ju D T∈

ulp ′  including  from u to a node 

must exist in G. Using similar above arguments, we obtain that the arc  must 

be not included in 

( , )u l

( )stl p T′∈ ′ ( , )u l

( )A T ′ . Therefore, { }( ) ( , ) \ : ( ) and ( )j jA T u l A T u D T l D T′ ′= ∈ ∉ ∉ .  

 

Therefore, any non-tree arc in ( )A T ′  satisfies case 1 of proof of lemma 2, that is, this arc 

maintains its non-negative reduced cost value. Thus, from lemma 2 and lemma 3, searching 

{ }( ) ( , ) ( )
( , ) arg min ( ) :  ( ) 1A T ul lu l A T
i j c T x T′ ′∈

′ ′= =  is equivalent to search 

{ }*
( ) ( , ) ( )

( , ) arg min ( ) :  ( ) 1A T ul lu l A T
i j c T x T′ ′∈

′= =  where T  is an optimal tree. *

 

Finally, from the later lemmas and the binary partition scheme, we can conclude without 

proof, one of the main results in this paper: 

 

Theorem 1. Given a directed acyclic network, the kth point-to-point shortest simple path can 

be obtained by making a single T-exchange in the tree of at least one of the previous  

(k-1)th point-to-point shortest simple paths. 

 

 

4. An Efficient Algorithm for the K Point-to-Point Shortest Simple Paths 
Problem in a directed network without directed cycle. 

 
This section details the algorithm to solve efficiently the K point-to-point shortest simple 

paths problem in an acyclic network. For that, we introduce additional notation. 
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Given a tree T, the proposed method uses distance label  and the predecessor label ( )ud T

( )upred T  for each u V∈ . We assume that in the adjacency node list { }| ( , )iT j V i j T+ = ∈ ∈  

the values of  are stored. ijc

We suppose that the set of predecessor nodes of node i in the directed graph (V, A), 

{ }| ( , )i j V j i A−Γ = ∈ ∈ , are stored in non-decreasing order of the reduced cost *( )jic T  where 

 is an optimal tree, for any node *T i V∈ . The first element in i
−Γ  is ifirst  and last element is 

. Given an pointer pt to an element in ilast i
−Γ , next(pt) give the next element to pt if pt is 

different of , otherwise next(pt) is NULL. ilast

Additionally, for each calculated tree , a pointer pt to the arc pT

{ }*
( ) ( , ) ( )

( , ) arg min ( ) :  ( ) 1p p

p
ul lA T u l A T

i j c T x T
∈

= =  is calculated (the arc is ( . , . )pt i pt j ) and it is 

stored together the index p indicating the associated pth best tree in a heap using as key the 

value *( ) ( )p
ij tc T d T+ . Algorithm uses n (Fibonacci) heaps, we denote the ith heap by  in 

the algorithm with 

iH

{ }1,...,i∈ n . The algorithm stores the lth generated candidate in the heap 

with index . Therefore, the maximum size of any of these heaps is O(mod 1+l n K
n

). 

Assuming that t is the size of a heap, the operation Insert requires an effort O(log t) and the 

operations Create Heap, Findmin and Deletemin takes O(1) time. 

In order to simplify the examination of the set of arcs ( )A T  for a given tree T, the 

algorithm maintains a (dynamic) vector containing at most n pointers to the last arcs arriving 

at different nodes in ( )stp T  which were used to generate other best solutions. For example, if 

from tree T were used the arcs , ( , )u l ( , )u l′ ′  and ( , )u l′′ ′ , the vector contains only two entries: 

a pointer to arc ( ,  in and a pointer to arc ( ,)u l l
−Γ )u l′′ ′  in l

−
′Γ . Thus, we can ask in constant 

time for the next arc arriving at a particular node in ( )stp T . We denote by  the vector 

associated with kth calculated best solution. Operations Create, Add (at the end) and Access 

to a given position of a vector  takes O(1) time. 

[ ]Ve k

[ ]Ve k

Therefore, now, a way to easily implement the selection of the arc 

{ }*
( ) ( , ) ( )

( , ) ( , ) arg min ( ) :  ( ) 1A T ul lu l A T
i j i j c T x T

∈
= = =  consist in applying the following procedure: 
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Procedure (SMA) Searching_Minimum_Arc(var C, var , T, , , u); minpt [ ]Ve k ( )pred T

=vvisited FALSE  ; pos = NULL; ∀ ∈v V

For all  do ∈ [ ]pt Ve k

=.pt jvisited TRUE ; ; = ( )pt next pt

//if pt point to an arc belonging to T then, pt is increased 
If (( ) and (≠pt NULL ==. ( ) .pt jpred T pt i )) Then = ( )pt next pt ; 
If (( ) and (≠pt NULL <*

. . ( )pt ipt jc T C ))Then 

= *
. . ( )pt lpt uC c T ; =minpt pt ; pos = current position in ; [ ]Ve k

While ( ) do ≠u s

If ( ==uvisited FALSE )Then 

= upt first ; =uvisited TRUE  
//if pt point to an arc belonging to T then, pt is increased 
If (( ) and (≠pt NULL ==. ( ) .pt jpred T pt i )) Then = ( )pt next pt ;  

If (( ) and (≠pt NULL <*
. . ( )pt lpt uc T C ))Then 

= *
. . ( )pt lpt uC c T ; =minpt pt ; pos = NULL; 

= ( )uu pred T ; 

If ( ) Then Set position pos in  equal to ; ≠pos NULL [ ]Ve k minpt

Else Add  at the end of ; minpt [ ]Ve k

 
The procedure SMA is called with the variable C = ∞  to determine the pointer to an arc 

{ }*
( ) ( , ) ( )

( , ) arg min ( ) :  ( ) 1A T ul lu l A T
i j c T x T

∈
= =  for a given tree T with the set of non-tree arcs 

( )A T . The value of u is the fixed node in ( )stp T  with minor depth in T. Initially, all node 

 is considered as not visited. Next, all positions of the vector  are scanned. Note 

that the last arc arriving at node 

v V∈ [ ]Ve k

.pt j  already used was stored in  and therefore pt 

equals  and the procedure marks 

[ ]Ve k

( )next pt .pt j  as visited. If the arc ( . , . ) ( )stpt i pt j p T∈ , the 

procedure makes . In any case, procedure keeps pt being the best candidate arc 

arriving at node 

( )next pt

.pt j . The procedure store in pos the position in  indicating the current 

best candidate. Next, the procedure backtracks on the index  using the pred(T) labels until 

. Note that only non-visited nodes are scanned. Therefore, 

[ ]Ve k

u

u s= upt first=  since non arc 

arriving at node u has been previously considered. Again, if the arc ( . , . ) ( )stpt i pt j p T∈ , the 

procedure makes . Otherwise, procedure keeps pt. The procedure SMA returns a 

pointer 

( )next pt

minpt  to the arc ( ,  belonging to )i j ( )A T  if it exists. Moreover, minpt  is conveniently 

introduced in . Note that, each node u[ ]Ve k V∈  in the tree path from node s to node t in T is 
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reached at most one time. For each reached node u, the best arc ( . , . )pt i pt j  with  is 

obtained in constant time. Thus the computational effort performed by this procedure is O(n). 

.. pt jpt i −∈Γ

We use an additional data structures as in Gabow [4] to reduce the memory space needed 

by the algorithm. Thus, let us assume that the first k trees kT ′ , { }1,...,k ′∈ k , have been 

calculated. Then, we use the follow structure to store these trees as a directed out tree: 

[ ]father k′  stores the index p associated with tree  and a pointer pt to the entering arc 

 in G that leads to obtain the tree 

pT

( , )i j kT ′ ( [ ]father k′ ={p, pt }). Using this information, any 

tree  can be derived from the initial optimal tree  by the next procedure. kT *T

 

Procedure (BT) BuildingT (k, father , var , var var T, var u); ( )pred T ( )td T

= *T T ; ; ; = *( ) ( )u upred T pred T ∀ ∈u V = *( ) ( )t td T d T

Let u=pt.i be the tail node of the arc ( )[ ]. . , .father k pt i pt j  when k > 1; Otherwise u = t; 

While (k ≠ 1) do 

( ){ } ( ){ }= ∪ .[ ]. . , . \ ( ), .pt jT T father k pt i pt j pred T pt j ; =. ( ) .pt jpred T pt i ; = + *
. .( ) ( ) ( )t t pt ipt jd T d T c T  

k = [ ].father k p ; 

 

The procedure BT is called with the index k of the tree to be constructed. Initally, the 

procedure set , *T T= *( ) ( )u upred T pred T=  for all u V∈ , and  where  is 

an optimal tree. The output of this procedure is 

*( ) ( )t td T d T= *T

kT T= . The procedure backtracks on the 

index  using the father labels until k 1k = . This process lets us identify the needed exchanges 

in  to obtain T and sets *T ( )jpred T i=  to correctly compute . Also, procedure computes 

. Remember that when we made a T-exchange with arc 

kT

( )k
td T ( , ) ( )i j A T∈  in T then, we set 

{ }( ) ( , ) \ : ( ) and ( )j jA T u l A T u D T l D T′ ′= ∈ ∉ ∉ . In other words, any node in the sub-path 

from node i to node t is fixed in T . Therefore, the procedure BT identifies the tail node u = i 

of the arc 

′

[ ].( , )father k i j  being the fixed node in the ( )stp T  with minor depth. Clearly, the 

procedure BT requires an effort O(n) since the number of iterations in the loop is at most 

, that is, the depth of the tree of trees is at most 1n− 1n− . 

Taking into account the above notation and remarks, a scheme of the algorithm is:  
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K Point-to-Point Simple Shortest Paths (KPPSSP) Algorithm; 

(1) Let  be an optimal tree and store ,  for a tree ; *T *( )d T *( )pred T *T

(2) Set ; ; = 1k *T T=
(3) Sort the elements in by it reduced cost −Γi ∀ ∈i V ; 

(4) Create Heap  with ; Create ; iH = 1,...,i n [1]Ve

(5) SMA(C = ∞, , T, , , t); minpt [1]Ve *( )pred T

(6) If ( ≠ NULL) then Insert { , minpt minpt + ( )tC d T , k} in ; 1H
(7) While ((k < K) and ( )) 

1

n

i
i

H
=

≠ ∅∪

(8) = ∞minC ;  = 0; minv
(9) For v = 1 to n do 

(10) Findmin {pt, C ,p} of ; vH
(11) If (( ≠ NULL) and ( )) then pt >minC C

(12) =minC C ;  = pt;  = v;  minpt minv
(13) { }min[ 1] ,father k p pt+ = ; Deletemin of ; 

minvH

(14) BT(p, father , , T, u); ( )pred T ( )td T

(15) SMA(C = ∞, , T, , , u); pt [ ]Ve p ( )pred T

(16) If ( pt ≠ NULL) then Insert { , pt + ( )tC d T , p} in ; 
minvH

(17) Set ; = + 1k k

(18) ( ){ } ( ){ }minmin min . min. , . \ ( ), .pt jT T pt i pt j pred T pt j= ∪ ; =
min . min( ) .pt jpred T pt i = + min( ) ( )t td T C;d T ; 

(19) Create ; u = ; [ ]Ve k min.pt i

(20) SMA(C = ∞, , T, , , u); pt [ ]Ve k ( )pred T

(21) If ( pt ≠ NULL) then Insert { , pt + ( )tC d T , k} in mod 1k nH + ; 

 

The algorithm starts with an optimal tree *T T=  and stores labels  and *( )d T *( )pred T . 

The index of the number of best solutions k is set to 1. The heaps  with  are 

created. A pointer pt to the arc  is determined by calling the procedure SMA(C

iH 1,...,i n=

( , )i j = ∞ , 

minpt , , [1]Ve *( )pred T , t). and the element { minpt , ( )tC d T+ , 1} is inserted in  wherever 1H

minpt  exists. Then, the algorithm starts with a loop until the K best solutions are identified or 

no more feasible solutions are possible. Thus, in an iteration, the first elements of the n heaps 

are extracted and the element with minimum reduced cost among them is selected and deleted 

from its corresponding heap. This element identifies the way to obtain the ( )th best 

solution. In the algorithm 

1k +

{ }min[ 1] ,father k p pt+ =  lets us determine . Now, in the 

algorithm  is reconstructed by the procedure BT. Then, the new pointer pt to the arc 

1kT +

pT

( )
( , ) pA T
i j  arc is found by calling the procedure SMA for . The resulting point to an arc (if 

it exists) and the index p are stored in the heap (heap where 

pT

minvH minpt  was deleted) using the 
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key value  where C is the value calculated in the procedure SMA. Next in the 

algorithm, the index k is increased and  is built from  by a T-exchange. The  is 

created. Finally, for this new best tree, a pointer pt to the arc  is determined and the 

element {pt, , k} is inserted in 

( )tC d T+

kT pT [ ]Ve k

( )
( , ) kA T
i j

( k
tC d T+ ) mod 1k nH + . 

 

Theorem 2. The KPPSSP algorithm computes the K point-to-point shortest simple paths in 

O( log ( log )Km n n K n
n

+ + + ) time and O(K+m) space in directed acyclic graph G. 

 

Proof. In the beginning of the algorithm, the determination of 1T T *=  and the labels  

and 

*( )d T
*( )pred T  requires O( ) time (see Ahuja et al. [1]). Sort the predecessors adjacency 

node list 

m

{ }| ( , )i j V j i A−Γ = ∈ ∈  by it reduced cost for all node i V∈  needs O( ) 

time. Line (4) requires O(n) time. The procedure SMA requires an effort O(n) and the 

operation of create and insert for first time in the heap  takes O(1) time. Clearly, the 

algorithm makes at most K iterations. In each iteration of the algorithm, SMA is called twice 

requiring O(n) time overall, procedure BT is called once requiring O(n) time and two insert 

heap operations are made in O(

logm n n+

1H

log K
n

) since the size of any heap is bound by K
n

. Obtain the 

next best solutions, that is, lines (8)-(12) requires O(n) time. Remainder operations in the loop 

are made in O(1) time. Thus, the worst case time complexity of the algorithm is 

O( log ( log )Km n n K n
n

+ + + ) time. On the other hand, the space required by the algorithm is 

O(K + m), since the father, and heap structures require O(K) space; the tree T and its 

corresponding labels need O(n) space and the storing the adjacent list uses O(m) space. Each 

 contains a number of elements equal to min{n-1, sons( ) + 1} where sons( ) is the 

number of trees obtained from  by a T-exchange. Clearly 

 and therefore, the space used by all vectors 

is O(K).  

[ ]Ve k kT kT
kT

{ }
1 1
min 1, ( ) 1 ( ) 1 2

K K
k k

k k
n sons T sons T K

= =

− + ≤ +∑ ∑ ≤
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