

ON THE K SHORTEST PATH TREES PROBLEM

ANTONIO SEDEÑO-NODA

Universidad de La Laguna (DEIOC),38271- La Laguna, Tenerife, Spain, asedeno@ull.es

CARLOS GONZÁLEZ-MARTÍN
Universidad de La Laguna (DEIOC),38271- La Laguna, Tenerife, Spain, cgonmar@ull.es

We address the problem for finding the K best path trees connecting a source node with any other non-

source node in a directed network with arbitrary lengths. The main result in this paper is the proof that

the kth shortest path tree is adjacent to at least one of the previous (k−1) shortest path trees.

Consequently, we design an O(+Km) time and O(K+m) space algorithm to determine the K

shortest path trees, in a directed network with n nodes, m arcs and maximum absolute length , where

O() is the best time needed to solve the shortest simple paths connecting a source node with

any other non-source node.

max(, ,)f n m C

maxC

max(, ,)f n m C

Keywords: Network/Graphs: K shortest path trees Problem. Shortest path tree Problem

The shortest path (SP) problem in a directed network of n nodes an m arcs with arbitrary

lengths on the arcs, finds shortest length paths from a source node to all other nodes or detects

a cycle of negative length. The SP problem appears in many important real cases and there are

numerous algorithms to solve it (see, for example, Ahuja et al. [1]). The mathematical

formulation of the SP problem lets the solutions of the SP problem to be characterized by

path trees, that is, a tree containing a directed only one path from source node to any non-

source node. The determination of the optimal path tree (shortest path tree) can be efficiently

determined by Bellman-Ford-Moore (Bellman [3], Ford [7], and Moore [21]) label-correcting

algorithm achieving the best strongly polynomial running time of O(nm).

In this paper, we consider the K shortest path trees problem as the problem to determine the

K best basis trees (solutions) of the classical mathematical formulation of the SP problem.

The determination of the K shortest paths in a network has a wide range of applications. Some

of them are cited in Eppstein [8]. We are unaware of any previous references to this problem

in the literature. A proof is offered which shows that the kth best basis tree is adjacent to at

least one of the previous k−1 best basis trees. In other words, the kth best solution is obtained

from one of the previous best solutions by exchanging an arc in the basis tree for an arc

outside of the basis tree. This results allows an algorithm to be designed running in

maxO((, ,))Km f n m C+ time and requiring O(K+m) memory space, where

(>) is the best bound to solve the SP problem in a directed network.

On the other hand, this problem is similar to the K shortest simple paths problem. This last

problem has been the subject of a large number of references in the literature. We can

chronologically cite Hoffman and Pavley [15], Pollack [23], Yen [25, 26], Lawler [18], Katoh

et al. [17] for undirected networks, Perko [22], Brander and Sinclair [4], Martins et al. [20],

Hadjiconstantinou and Chirstofides [12], Martins and Pascoal [19] and Hersberger et al. [14].

The best bound to solve the problem in directed networks is reached in the early paper of Yen

[25]. Yen’s [25] algorithm runs in . An extended bibliography of several

K best shortest path problems is available at

<http://www.ics.edu/~eppstein/bibs/kpath.bib>. We claim that the theoretical

results from this paper can be an initial and alternative point of view when considering its

application to other K best combinatorial optimization problems.

maxO((, ,))f n m C O()m

maxO((, ,))Kn f n m C

The structure of the paper follows. Section 1 presents the linear programming formulation

of the SP problem and the K shortest path trees problem are given. In section 2, we introduce

the foundations which the algorithm is based on. The adjacency property between the kth best

solution and some of the previous best solutions is proved. Section 4 contains a detailed

pseudo code and an explanation of the proposed algorithm and some procedures. Moreover,

the worse case time and space theoretical complexity of the algorithm is proven. Finally, in

section 5, we offer our conclusions, lines of future research and open problems.

1. THE SHORTEST PATH TREE AND THE K SHORTEST PATH TREES

PROBLEMS.

Given a directed network G = (V, A), let V be the set of n nodes and let A be the set of m

arcs. The network has a distinguished node s, called the source node. For each arc Aji ∈),(,

let be its length and ijc ∈ { }max (,)
max
i j A

C c
∈

= ij . We denote by { }| (,)i j V j i A−Γ = ∈ ∈ for all

node . The length of a directed path is the sum of the arc lengths in the path. The

shortest path tree problem consists in finding a shortest length path from node s to every non-

source node

i V∈

{ }\i V s∈ or in determining a negative cycle, that is, a directed cycle of negative

length.

2

If a flow is associated with each arc , a supply ijx),(ji (1sb n)= − with node s, and

demands for all others nodes i1ib = − s≠ , then the following linear programming problem

represents the SP problem (see Ahuja et al. [1]):

{ }{ }

(,)

:(,) :(,)

Minimize () (1)

subject to
 , (2)

 0, (,) (3)

ij ij
i j A

ij ji i
j i j A j j i A

ij

c x c x

x x b i V

x i j A

∈

∈ ∈

=

− = ∀ ∈

≥ ∀ ∈

∑

∑ ∑

The above problem is a special case of the minimum cost network flow (MCNF) problem.

The network simplex algorithm can be used to find the solution to the above problem by

taking advantage of the fact that of any basic solution of the MCNF problem is a spanning

tree of G. Moreover, every feasible spanning tree T is non-degenerate, i.e. ,

. Therefore, the network simplex algorithm will never perform degenerate pivots

for the SP problem. In addition, all feasible spanning trees are trees rooted at node s such that

the unique path in the tree from node root s to every other node is a directed path. We refer to

these spanning trees as directed out-spanning trees. Note that in this kind of tree, each node

T A⊆ 0ijx >

(,)i j T∀ ∈

{ }\i V s∈ has only one node predecessor in the tree ()()ipred T , that is, its in-degree is one.

Also, let { }| (,)iT j V i j T+ = ∈ ∈ .

Distance labels of the nodes (negative dual variables) corresponding to a basis tree T are

also obtained by setting and solving () 0sd T = () () 0ij i jc d T d T+ − = , . Thus,

given a basis tree T, we define the reduced cost

(,)i j T∀ ∈

() () ()ij ij i jc T c d T d T= + − , . (,)i j A∀ ∈

Let X be the convex polyhedron defined by constraints (2)-(3) (decision space). Two

fundamental results in the literature (see, for example, Ahuja et al. [1], Goldfarb et al. [11])

are:

(i) Any feasible solution of the SP problem is a vertex of X and vice-versa.

(ii) Every vertex of X has associated only one directed out-spanning tree.

In the rest of paper, we refer to a directed out-spanning tree as tree (or basis tree). Let

 be the value of the function objective associated with the basis tree T. We
(,)

() ij ij
i j T

C T c x
∈

= ∑

3

also define ()iD T to be the set of descendants of node i in the basis tree T, that is, the set of

nodes in the subtree rooted at i, including node i. Note that () 1iD T ≥ .

In a simplex pivot, an arc (, with reduced cost) \i j A T∈ ()ijc T and is added to T

and

()ji D T∉

((),j)pred T j is deleted from T yielding a new basis tree T ′ . The arc flow values are

given by ()ij jx D T= , (,)i j T∀ ∈ , and the objective function value by
(,)

() ()ij j
i j T

C T c D T
∈

= ∑

or, equivalently, . Once a pivot is performed, the distance labels in T() ()i
i V

C T d T
∈

= ∑ ′ are

updated in the following way: () () ()k k ijd T d T c T′ = + , ()jk D T∀ ∈ . Furthermore, the

objective function value is () () ()ij jC T C T c D T′ = + .

For an optimal tree , we obtain the following optimality conditions:

 or, equivalently,

*T
* *() () , (,)íj i jc d T d T i j A+ ≥ ∀ ∈ *() 0, (,)ijc T i j A≥ ∀ ∈ . These inequalities

are called Bellman’s optimality conditions.

The K shortest path trees problem consists in determining the K best solutions of the

problem (1)-(3). In other words, identifying the K best basis tree with kT { }1,...,k ∈ K such

that 1 2() () ... ()KC T C T C T≤ ≤ ≤ and for any other basis tree pT T k≠ with { }1,...,k K∈ is

. () ()p KC T C T≥

2. FOUNDATIONS.

In this section, we introduce and prove the basic results to the efficient resolution of the K

shortest path trees problem.

First we need to introduce the following definitions and results which deal with the

concept of adjacency between two basis trees:

Definition 1. Two basis tree T and T ′ are adjacent if and only if both have arcs in

common, that is, both trees differ in only one arc.

2n−

The above definition implies that the basis tree T ′ can be reached from the basis tree T by

a simplex pivot where the entering arc is just the arc (,) \i j T T′∈ and (,) \p q T T ′∈ is the

leaving arc. Moreover, let T and T be two basis trees that differ in the ′ p n< arcs. Then the

following property introduced in Sedeño-Noda and González-Martín [24] holds:

4

Proposition 1. If T and T differ in p < n arcs, where E = { ,…, } are the arcs in

 that are not in T, then: (1) E does not contain a directed cycle; (2)

′ 1 1(,)i j (,)p pi j

T ′ u vj j≠ holds for all

{ }, 1,...,u v p∈ with u v≠ ; (3) These arcs define the smallest simplex pivot sequence to obtain

 from T, and the order in which these simplex pivots are performed is irrelevant. T ′

Proposition 2 indicates that to obtain an optimal basis tree from any basis tree T, we

must choose a set of

*T

p n< arcs, ,…, , satisfying 1 1(,)i j (,)p pi j u vj j≠ for all { }, 1,...,u v p∈

with u . Given any basis tree T, we use the term multiple pivot for the operation where p <

n arcs are entered simultaneously in T, satisfying proposition 2.

v≠

We now need to obtain the best basis tree T ′ , that is, the basis tree with a smaller objective

value , from the basis tree T with all its non-tree arcs with non-negative reduced

cost (for example an optimal basis tree

() ()C T C T′ ≥

*T T=). To do so, we must investigate which p n<

arcs that satisfy proposition 2 lead to the smallest increase in the objective function of the SP

problem when they are introduced into the basis tree T, thereby obtaining the basis tree T ′ .

We must investigate the value of objective function when a multiple pivot on basis tree T is

made in order to identify this set of arcs.

For simplicity consider a multiple pivot with the arcs (){ }1 1 2 2, , (,)i j i j with in tree

T, obtaining tree T . Without a loss of generality, we assume that

1j j≠ 2

′
21 ()jj D T∉ (note that if

21 ()jj D T∈ then
12 ()jj D T∉ and we can interchange 1j by 2j and vice versa in our

arguments). Now, the objective function value of the basis tree T ′ as a function of

must be considered. Let us examine the following cases:

()C T

Case A) If
21 ()jj D T∉ and

21 ()jj D T ′∉ then, theses subcases must be considered:

A1).
12 ()jj D T∉ and

12 ()jj D T ′∉ ⇒
1 1 1 2 2 2

() () () () () ()′ = + +i j j i j jC T C T c T D T c T D T

j1 j2i1 i2

s

5

A2).
12 ()jj D T∈ and

12 ()jj D T ′∉ ⇒
1 1 1 2 2 1 1 2

() () () () (() ()) ()′ = + + −i j j i j i j jC T C T c T D T c T c T D T

j1

j2

i1 i2

s

A3).

12 ()jj D T∉ and
12 ()jj D T ′∈ ⇒

1 1 1 2 2 1 1 2
() () () () (() ()) ()′ = + + +i j j i j i j jC T C T c T D T c T c T D T

j1 j2i1

i2

s

A4).

12 ()jj D T∈ and
12 ()jj D T ′∈ ⇒

1 1 1 2 2 2
() () () () () ()′ = + +i j j i j jC T C T c T D T c T D T

j1

j2

i1

i2

s

Case B). If

21 ()jj D T∉ and
21 ()jj D T ′∈ (

12 ()jj D T ′∉) then, these subcases must be

considered:

B1).
12 ()jj D T∉ and

12 ()jj D T ′∉ ⇒
2 2 2 1 1 2 2 1

() () () () (() ()) ()′ = + + +i j j i j i j jC T C T c T D T c T c T D T

j1 j2

i1

i2

s

B2).

12 ()jj D T∈ and
12 ()jj D T ′∉ ⇒

1 1 2 2 1 1 1 2
() () (() ()) () () ()i j i j j i j jC T C T c T c T D T c T D T′ = + + −

j1

j2 i1

i2

s

From the above cases, we can conclude that:

6

Lemma 1. Given a basis tree T, let T ′ be the basis tree obtained from T making a multiple

pivot with two arcs (){ }1 1 2 2, , (,)i j i j both with non-negative reduced cost. Then ()C T ′ is

greater than or equal to the objective function value of at least one of the two basis trees that

can be obtained by making a simplex pivot with only one arc in the set (){ }1 1 2 2, , (,)i j i j .

Proof. Since , ,
1
() 0>jD T

2
() 0>jD T

1 1
0i jc ≥ and

2 2
0i jc ≥ , we have the following results:

• In case A1), we conclude that
1 1 1 2 2 2 1 1 1

() () () () () ()i j j i j j i j jc T D T c T D T c T D T+ ≥ and

1 1 1 2 2 2 2 2 2
() () () () () ()i j j i j j i j jc T D T c T D T c T D T+ ≥ .

• In case A2), since
1 2
() ()>j jD T D T , we conclude that

1 1 1 2 2 1 1 2 2 2 2
() () (() ()) () () ()i j j i j i j j i j jc T D T c T c T D T c T D T+ − ≥ . In addition, if

1 1 1 2 2 1 1 2 1 1 1
() () (() ()) () () ()+ − <i j j i j i j j i j jc T D T c T c T D T c T D T then,

1 1 2 2
>i j i jc c and vice

versa.

• In case A3), we conclude that

1 1 1 2 2 1 1 2 2 2 2
() () (() ()) () () ()i j j i j i j j i j jc T D T c T c T D T c T D T+ + ≥ and also that

1 1 1 2 2 1 1 2 1 1 1
() () (() ()) () () ()i j j i j i j j i j jc T D T c T c T D T c T D T+ + ≥ .

• In case A4) we obtain the same conclusions as in case A1).

• In case B1), we obtain the same conclusions as in case A3).

• In case B2), we have a special situation. A basis tree has not been obtained by making a

pivot only with the arc because 1 1(,)i j
11 ()ji D T∈ . Thus, since

1 2
() ()>j jD T D T , we

obtain that
1 1 2 2 1 1 1 2 2 2 2

(() ()) () () () ()) ()i j i j j i j j i j jc T c T D T c T D T c T D T+ − ≥ .

From the above comparisons, we arrive to the conclusion of the lemma. �

Given a basis tree T, we denote by ()A T a subset of arcs of A\T and

{ }(()) | (,) ()i A T j V i j A T+Γ = ∈ ∈ (the set of nodes adjacent to node i in the directed graph (V,

A(T))). Then we define { }() (,) ()
(,) arg min () () : ()A T ul l lu l A T
i j c T D T u D T

∈
= ∉ . We do not consider

in the previous minimum the arcs (, such that)u l ()lu D T∈ because a simple simplex pivot

with any of these arcs does not allow us to obtain a basis tree. Then, we obtain the next result.

7

Lemma 2. Given a basis tree T with a set of arcs ()A T with non-negative reduced cost. Let

be the basis tree obtained from T making a simplex pivot with the arc .

Then any arc in the set

T ′ ()(,) ()A Ti j A T∈

{ }()() () (,)A TA T A T i j′ = − has a non-negative reduced cost with

respect to the basis tree T . ′

Proof. Given a basis tree T, when a simplex pivot is made with the entering arc

,the basis tree T()(,) (,) ()A Ti j i j A T= ∈ ′ is obtained, and only the distance labels of the nodes

in ()jD T increase by , ()i jc T .

First, we must consider the next cases to verify the sign of each arc (, in)u l

{ }() () (,)A T A T i j′ = − with : ()lu D T∉

Case 1) if and or ()ju D T∈ ()jl D T∈ ()ju D T∉ and ()jl D T∉ then, we have

 and therefore () () () ()u l u ld T d T d T d T′ ′− = − () () 0ul ulc T c T′ = ≥ .

Case 2) if and then ()ju D T∈ ()jl D T∉

() () () () () ()ul ul u l ul u ij lc T c d T d T c d T c T d T′ ′ ′= + − = + + − () () 0ul ijc T c T= + ≥ .

Case 3) if and then ()ju D T∉ ()jl D T∈

() () () () () () () ()ul ul u l ul u l ij ul ijc T c d T d T c d T d T c T c T c T′ ′ ′= + − = + − − = − , but since

{ }() (,) ()
(,) arg min () () : ()A T ul l lu l A T
i j c T D T u D T

∈
= ∉ and () ()j lD T D T> then,

() () () () () ()ij j ul l ul jc T D T c T D T c T D T≤ ≤ and therefore, () () 0ul ijc T c T− ≥ .

Now, we consider an arc (, in)u l { }() () (,)A T A T i j′ = − with ()lu D T∈ . Then, only the

previous cases 1 and 2 must be considered, since case 3 is not possible, because if

and , then . Therefore, using similar arguments it is proved that

()jl D T∈

()lu D T∈ ()ju D T∈

() 0ulc T ′ ≥ .

Therefore, in all of the above cases () 0ulc T ′ ≥ and, any arc in ()A T ′ has a non-negative

reduced cost. �

8

Note that when a simplex pivot with the entering arc ()(,)A Ti j is made, only the leaving arc

((),j)pred T j could have negative reduced cost for the basis tree T ′ , but this arc does not

belong to ()A T ′ .

From the previous results, we can establish the following:

Lemma 3. Given a basis tree T, let T ′ be the basis tree obtained from T making a multiple

pivot with the arcs (){ }1 1 2 2, , (,),..., (,)p pi j i j i j with non-negative reduced cost and with

2 p n≤ < . Then is greater than or equal to the objective function value of at least one

of the p basis trees that can be obtained by making a simplex pivot with only one arc in the set

()C T ′

(){ }1 1 2 2, , (,),..., (,)p pi j i j i j .

Proof. Let (){ }1 1 2 2() , , (,),..., (,)p pA T i j i j i j= . Note that any arc in a has non-negative

reduced cost for the basis tree T. From Lemma 1, we have already proven the statement of

this lemma for . Now, we assume that

()A T

2p = 3p = and determine ()(,)A Ti j . Thus, the multiple

pivot with the arcs ()A T can be considered in the next order: first we make a simplex pivot

with the arc ()(,)A Ti j obtaining the basis tree T ′ and then a multiple pivot with the two

remainder arcs in { }()() () (,)A TA T A T i j′ = − . Note that from lemma 2 any arc in has a

non–negative reduced cost for the basis tree T

()A T ′

′ . Therefore, the basis tree T and the set ′

()A T ′ satisfy the conditions of lemma 1. That is, the basis tree obtained making multiple

pivots with the two arcs in ()A T ′ has an objective function value greater than or equal to at

least one of the two basis trees that can be obtained by making a simple simplex pivot with

only one arc in the set ()A T ′ in T . Thus, consider the basis tree T′ ′′ obtained by making a

simple simplex pivot with any arc (,) ()u l A T ′∈ . Note that T ′′ can be obtained from T making

a multiple pivot with the arcs ()(,)A Ti j and (, . In other words, the set of arcs)u l ()(,)A Ti j and

 for the basis tree T satisfy the conditions of lemma 1. Therefore, a basis tree with the

lowest increase in the objective function value can be obtained from T by making a

simple simplex pivot with the arc

(,)u l

()C T

()(,)A Ti j . Thus, we have proved the statement of this lemma

for . By induction and using the above arguments, the statement of this lemma is proven

for any

3p =

p n< . �

9

We are interested in generating the K best shortest simple path trees in order without

repeating the calculation of the same best solution. To do so, given a basis tree T, the entering

arc { }() (,) ()
(,) (,) arg min () () : ()A T ul l lu l A T
i j i j c T D T u D T

∈
= = ∉ and the basis tree T obtained by

making a simplex pivot with the entering arc , we modify the respective set of non-tree

arcs as follows:

′

(,)i j

{ }() () (,)A T A T i j= − and { }() () (,) () :A T A T u l A T l j′ = − ∈ = . Note that

since does not contain any incoming arc in node j, any basis tree obtained from T()A T ′ ′

subsequently contains the arc . In addition, any basis tree obtained from T does not

contain the arc (binary partition strategy). From these comments, it is clear that the

determination of the same basis tree is not performed twice or more times.

(,)i j

(,)i j

Finally, based on lemmas 2 and 3; we come to the first conclusion included in the main

results in this paper:

Theorem 1. The kth best shortest path tree is adjacent to at least one of the previous (k−1)th

best shortest path trees.

Proof. Let be the first best basis tree, that is, an optimal shortest simple path tree.

Clearly, any arc in

1T T= *

11() \A T A T= has a non-negative reduced cost and G does not have

negative length cycle. Otherwise is not an optimal shortest path tree. From Lemma 3, we

obtain a second best basis tree by making a simple simplex pivot in with the arc

. Clearly, is adjacent to basis tree . Now, let

1T
2T 1T

1()
(,)

A T
i j 2T 1T { }1

1 1
()

() () (,)
A T

A T A T i j= − and

{ }2 1 1() () (,) () :A T A T u l A T l= − ∈ = j

1

 be the associated non-tree arcs sets of the trees and

, respectively. From lemma 2, any arc in

1T

2T 2() ()A T A T⊂ has a non-negative reduced cost

with respect to . Therefore, let 2T 1T ′ be the basis tree obtained from making a simple

simplex pivot with the entering arc . Similarly, let be

1T

1()
(,)

A T
i j 2T ′ be the basis tree obtained

from by making a simplex pivot with the entering arc . From Lemma 3, 2T 2()
(,)

A T
i j 1T ′ and

 are the closest basis trees that can be obtained from and , respectively, using their

corresponding set of arcs

2T ′ 1T 2T
1()A T and 2()A T . Clearly, the third best basis tree is

{ }{ }3 1arg min () | ,T C T T T ′ ′= ∈ 2T . If equals 3T 1T ′ then is adjacent to and we set 3T 1T

10

{ }1
1 1

()
() () (,)

A T
A T A T i j= − and { }3 1 1() () (,) () :A T A T u l A T l j= − ∈ = . Otherwise, if

equals then is adjacent to and we set

3T

2T ′ 3T 2T { }2
2 2

()
() () (,)

A T
A T A T i j= − and

{ }3 2 2() () (,) () :A T A T u l A T l j= − ∈ = . Note again that from Lemma 2, any arc in the

resulting set of non-tree arcs has a non-negative reduced cost and, therefore the conditions of

Lemma 3 are satisfied. Therefore, by induction it is proved that

{ }{ }1arg min () | ,...,k kT C T T T T′ ′= ∈ p where T ′ is the basis tree obtained from the pth best

basis tree by making a simplex pivot with the entering arc pT

{ }() (,) ()
(,) arg min () () : ()p p

p p p
ul l lA T u l A T

i j c T D T u D T
∈

= ∉ . In other words, the theorem holds. �

3. AN EFFICIENT ALGORITHM FOR THE K SHORTEST PATH TREES

PROBLEM.

This section introduces an algorithm to solve efficiently the K shortest path trees problem.

We begin introducing additional notation.

Given a basis tree T, the proposed method uses distance labels and the predecessor

labels

()ud T

()upred T for all u . The algorithm also needs to know the value of V∈ ()uD T for all

 and the objective value . Thus, given a basis tree T, we assume that in the

adjacency node list

u V∈ ()C T

{ }| (,)iT j V i j T+ = ∈ ∈ the values of are stored. We initially set

,

ijc

() 0,C T = () 0sd T = ()spred T s= and () 0uD T = , u V∀ ∈ . Then, the ComputingLabels

procedure is called with u for a given basis tree T to calculate the previous information in

O(n) time.

s=

Procedure (CL) ComputingLabels(u, var , var , var , var()C T ()d T ()pred T ()D T , T);

(1) For all do +∈ ul T

(2) =()lpred T u ;

(3) = +() ()l ud T d T cul ;

(4) ComputingLabels(l, , , ,()C T ()d T ()pred T ()D T ,T);

(5) = +() () ()u u lD T D T D T ;

(6) = +() () 1u uD T D T ;

(7) ()C T = + ; ()C T ()ud T

11

Additionally, we associated a subset of non-tree arcs with each basis tree T. For each

calculated basis tree , the arc

()A T

pT { }() (,) ()
(,) arg min () () : ()p p

p p p
ul l lA T u l A T

i j c T D T u D T
∈

= ∉ is

calculated and it is stored together with the index p indicating the associated pth best basis

tree in a heap using as key the value () () (p p
ij jc T D T C T+)p . We denote this heap by H in

the algorithm. Assuming that t is the size of a heap, the operation Insert requires an effort

O(log t) and the operation of extracting the element of the min-key (Extract First) takes O(1)

time. The Create Heap operation takes O(1) time.

In order to simplify the examination of the set of arcs ()A T for a given basis tree T, we

maintain an additional Boolean label named for each node i . is

FALSE if and only if the arc ((

()ieligible T V∈ ()ieligible T

),i)pred T i can not be chosen to leave the basis tree T

(equivalently, no arc arriving at node i can be selected to enter into the basis tree T).

Otherwise, is TRUE. On the other hand, given a basis tree T and its

corresponding set of non-tree arcs

()ieligible T

()A T , we assume that in the adjacency node list

{ }(()) | (,) ()+Γ = ∈ ∈i A T j V i j A T the value of and Boolean label ijc _ (ij)Arc eligible T are

stored. _ ij ()Arc eligible T is TRUE for arc (,) ()i j A T∈ if and only if this arc can be chosen

to enter into the basis tree T. Initially the label _ ij ()Arc eligible T is TRUE for all arc in

G.

(,)i j

Using the above notation, one way to easily implement the selection of the arc

{ }() (,) ()
(,) (,) arg min () () : ()A T ul l lu l A T
i j i j c T D T u D T

∈
= = ∉ consist in applying the following

recursive procedure:

Procedure (SMA) Searching_Minimum_Arc(u, var C, T, , ,()AT ()d T ()D T ,eligible(T));

(1) = TRUEuvisited ;

(2) For all do +∈ ul T

(3) Searching_Minimum_Arc (l, C);

(4) For all do +∈ Γ (())ul AT

(5) If () and (== FALSElvisited ()leligible T TRUE==) and

() and (==_ () TRulArc eligible T UE + − ⋅ <(() ()) ()ul u l lc d T d T D T C) Then

(6) = + − ⋅(() ()) (ul u l lC c d T d T D T) ;

(7) =i u ;

(8) =j l ;

(9) = FALSEuvisited ;

12

The procedure SMA is called with parameters u s= and the variable to determine

the arc

C = ∞

{ }() (,) ()
(,) arg min () () : ()A T ul l lu l A T
i j c T D T u D T

∈
= ∉ for a given basis tree T with the set of

non-tree arcs ()A T . Moreover, when a non-tree arc is examined in the procedure and

, this means that

(,)u l

TRUElvisited == ()lu D T∈ and, therefore, this arc is not considered for

selection. The only local variable in the procedure is l. All elements used in the procedure are

defined out of this procedure (initially all nodes are not visited). This procedure returns a

pointer to the arc belonging to if it exist, otherwise it returns NULL. As T is a

basis tree, each node

(,)i j ()A T

u V∈ is reached exactly once when this procedure is called from node s.

For each node, the set of arcs with are scanned. Thus the computational

effort performed by this procedure is O(m).

(,)u l (())ul A T+∈Γ

Finally, we use an additional data structures as in Gabow [9] to reduce the memory space

needed in the algorithm. Thus, let us assume that the first k basis trees , kT ′ { }1,...,k ′∈ k , have

been calculated. Then, we use the following structures to store these basis trees as a directed

out tree: []father k′ stores the index p associated with basis tree and a pointer to the

entering arc in G that leads to obtaining a basis tree

pT

(,)i j kT ′ ([]father k′ ={p, }). Each

element of the list stores the index and a pointer to the entering arc in G that

allowed the basis tree be obtained from

(,)i j

[]sons k′ (,)i j
pT kT ′ . The list []sons k′ is arranged in such a way

that the indices increase from left to right ([]′sons k ={{ 1p , },…,{1(,)i j rp , }} and (,)ri j

1 ... rp p< <).

In Gabow [9] the following sets are described to build and partially build kT ()kA T : Let B

be the set of basis trees in the path from to in the tree of trees, then define: 1T kT

{ }1 the entering arc (,) to obtain | is in and 1p p
pO i j T T B= >p

{ }2 the leaving arc ((),) to obtain | is in and 1p p
j pO pred T j T T B= >p

*
1 2

kT T O O= ∪ −

{ }
{ }
the entering arc (,) to obtain | is the left brother of in for all in and 1

the entering arc (,) to obtain | is a son of

p p l l
p

p p k
k p

I i j T T T B T B

I i j T T T

= >

=

l

We additionally define the set

{ }*(,) \ | (,) is the entering arc to obtain belonging to for 1p
k pJ l j A T i j T B p= ∈ >

13

Then *() ()k
k kA T A T J I= − − − I . Note that . 1 2 kO O J∪ ⊆

Using this information, any basis tree and its corresponding set of non-tree arcs kT ()kA T

can be derived from the initial optimal basis tree and *T *()A T by the next two procedures.

Procedure (BTA) BuildingT&A(T)(k, , var , var eligible(T), var T, var

);

father sons ()pred T

()AT

(1) If (k ≠ 1) then

(2) For all { } ∈,(,) [[].]l i j sons father k p with <l k do

(3) =_ () FALijArc eligible T SE ;

(4) BuildingT&A(T)(, , so , , eligible(T), T,); [].father k p father ns ()pred T ()AT

(5) (){ } (){ }= ∪ []. , \ (),jT T father k i j pred T j

(6) ()jpred T i= ;

(7) =()jeligible T FALSE ;

The previous procedure is called by the next procedure:

Procedure (CBTA) CallingBTA(k, , , var , var eligible(T), var T, var

);

father sons ()pred T

()AT

(1) =_ () TRUEijArc eligible T (,) ()i j AT ∀ ∈ ;

(2) For all { },(,) []l i j sons k∈ do

(3) ==_ () FALijArc eligible T SE ;

(4) BuildingT&A(T)(k, , so , , eligible(T), T,); father ns ()pred T ()AT

The procedure CBTA is called with *T T= and *() ()u upred T pred T= for all u V∈ ,

where is an optimal tree and the index p of the basis tree to be constructed. The output of

this procedure is and

*T
kT T= ()A T with some arcs marked as ineligible. Line (1) in procedure

CBTA initializes the flags _ ()ijArc eligible T TRUE= for each arc (,) ()i j A T∈ . Furthermore,

in lines (2)-(3) of procedure CBTA, we set _ ij ()Arc eligible T equal to FALSE for all

{ }, (,) []p i j sons k′ ∈ , that is, each arc in ()kA T that was selected is made ineligible

(*() ()k
kA T A T= − I). Line (4) calls the procedure BTA.

Lines (4)-(6) in procedure BTA lead to recursively building the basis tree , that is,

these lines backtracking on index using the father labels until

′kT

k 1k = . This process lets us

identify the needed exchanges in to obtain T and we need line (6) to correctly compute *T kT ′

14

(). On the other hand, lines (2), (3) and (7) lets us determine which

additional arcs in are not eligible to enter in the basis tree T . Recall that when we make

a simplex pivot with arc (, in T then, we set

*
1

kT T O O= ∪ − 2

()AT

) ()i j A T∈ { }() () (,)A T A T i j= − and

{ }() () (,) () :A T A T u l A T l j′ = − ∈ = . In other words, we set _ ij ()Arc eligible T and

 equal to FALSE. Thus, if ()jeligible T ′ kT ′ is obtained from by a sequence of simplex

pivots with

*T

(,)w wi j { }1,...,w∈ u) then, (k
weligible T ′ is FALSE { }1,...,w∀ ∈ u . Additionally

in lines (2)-(3), if kT ′ is a son of the basis tree with index [].father k p′ , then, we set

_ (k
ij)Arc eligible T ′ equal to FALSE { }, (,) [[r k].]p i j sons fathe p′ ′∀ ∈ such that p k′ < ′ and

then, we set [].k father k p′= and the process is repeated until 1k =

(() ()k k
kA T A T J= − I−).

Note that Line (1) of the procedure CBTA requires an effort O(m) and line (4) is the called

to the procedure BTA. The recursive procedure BTA is called at most times, since the

depth of the tree of trees is at most

1n−

1n− . Line (3) of this procedure and line (3) of the

procedure CBTA are executed at most m times in overall. Since for any basis tree in the

tree of trees, the number of its sons (

kT ′

kI ′) plus the number of its ancestors belonging to the set

I (I) is at most m. Therefore the computational effort of procedure CBTA and BTA is

O(n+m).

Taking into account the above notation and remarks, we introduce the algorithm to solve

the problem.

15

 K Shortest Path Trees (KSPT) Algorithm;

 /* Initialitation */
(1) Let be an optimal basis tree; Store with

;

*T = *() \AT A T (,)_ Ti jArc eligible = RUE

∀ ∈(,) ()i j AT

(2) Set ; ; = 1k *T T= ()ueligible T TRUE= *() ()u upred T pred T= u V∀ ∈ ;

(3) Set ; =() 0;C T () 0sd T = () 0uD T = u V∀ ∈ ;

(4) CL(s, , , ,()C T ()d T ()pred T ()D T , T);

(5) Create Heap H;
(6) =uvisited FALSE ; u V∀ ∈

(7) Let (, determined by SMA(s, C = ∞ T, , ,)i j ()AT ()d T ()D T ,eligible(T));
(8) If ((, ≠ NULL) then Insert {(, , k,)i j)i j ()C C T+ } in H;

 /* loop */
(9) While ((k < K) and (H ≠ ∅))
(10) Extract first {(, ,C ,p} of H;)i j

(11) { }[1] ,(,)father k p i j+ = ; Add { }1,(,)k i j+ at the end of ; []sons p

(12) *T T= ; =()ueligible T TRUE *() ()u upred T pred T= u V∀ ∈ ;

(13) CBTA(p, ,sons , ,eligible(T), T,) father ()pred T ()AT

(14) Set ; =() 0;C T () 0sd T = () 0uD T = u V∀ ∈ ;

(15) CL(s, , , ,()C T ()d T ()pred T ()D T ,T)

(16) Let (, determined by SMA(s, C = ∞ T, , ,)i j ()AT ()d T ()D T ,eligible(T));
(17) If ((, ≠ NULL) then Insert {(, , p,)i j)i j ()C C T+ } in H;

(18) Set ; = + 1k k

(19) (){ } (){ }= ∪ []. , \ (),jT T father k i j pred T j

(20) =()jeligible T FALSE ;

(21) Set ; =() 0;C T () 0sd T = () 0uD T = u V∀ ∈ ;

(22) CL(s, , , ,()C T ()d T ()pred T ()D T , T);

(23) Let (, determined by SMA(s, C = ∞ T, , ,)i j ()AT ()d T ()D T ,eligible(T));

(24) If ((, ≠ NULL) then Insert {(, , k,)i j)i j ()+C C T } in H;

 /* end of the loop */

The algorithm starts with an optimal basis tree that is stored as the first best basis tree

and its corresponding set of arcs is also stored. The flags Arc_eligible for each

arc in

*T

= *() \AT A T

()A T is set to TRUE. The index of the number of best solutions determined k is set to

1. Then the procedure CL is called to compute all labels associated with basis tree T. The arc

 is determined by calling the procedure SMA(s, (,)i j C = ∞ , T, , , ()A T ()d T ()D T ,

16

()eligible T). The heap H is created and the element {(, , 1,)i j () () ()⋅ +ij jc T D T C T } is

inserted in H wherever arc exists. Then, the algorithm starts with a loop until the K best

solutions are identified or no more feasible solutions are possible. Thus, in any iteration in the

algorithm, the first element in the heap is extracted. This element identifies the way to obtain

the (k +1)th best solution. In the algorithm

(,)i j

{ }[1] , (,)father k p i j+ = lets us determine 1kT + .

Moreover, adding { }1, (,)k i j+ at the end of will let us correctly identify the set []sons p

()A T for and for all descendants of 1kT + 1kT + in the tree of trees. Furthermore, the

construction of the set of arcs ()A T avoids determining each basis tree more than once, as

previously mentioned. Now, in the algorithm the basis tree and pT ()pA T are reconstructed

calling procedure CBTA and the labels of the basis tree are calculated by calling

procedure CL. Then, the new

pT

()
(,) pA T
i j arc is found by calling the procedure SMA for the

basis tree . The resulting arc (if it exists) and the index p are stored in the heap H using the

key value where C is the value calculated in procedure SMA. Next in the

algorithm, the index k is increased and the basis tree and its associated set of non-tree arcs

pT

(pC C T+)
kT

()kA T are built from the basis tree and the set pT ()pA T (lines (19)-(20)). The necessary

labels of the tree are calculated by calling procedure CL. Finally, for this new best basis

tree, the arc is determined and the element { , k,

kT

()
(,) kA T
i j

()
(,) (,) kA T
i j i j=

() () ()k k
ij jc T D T C T⋅ + k

*

} is inserted in H.

Theorem 2. The KSPT algorithm computes the K shortest path trees in O(Km+)

time and O(K+m) space in directed graph G.

max(, ,)f n m C

Proof. In the beginning of the algorithm, the determination of requires

O() time, that is O(min{nm,

1T T=

max(, ,)f n m C log()nm nC }) (see Bellman [3], Ford [7], Moore

[21] for example for the first bound and Goldberg [10] for the second bound) for a network

with possible negative arc lengths or O(min{ logm n n+ , ,log logm C logm n C+ }) for a

network with non-negative arc lengths (se Ahuja et al. [1] to find the references of these

bounds of the modified Dijkstra [6] algorithm). Storing *() \A T A T= and making all arc

eligible needs O(m) time. Lines (2)-(3), (6) involve an O(n) time. The procedure CL in line

17

(4) involves O(n) time. The calculation of the arc by the procedure SMA requires an

effort O(m) and the operation of create (line (5)) and insert (line (8)) in the heap takes O(1)

time. Clearly, the algorithm makes at most K iterations. In each iteration of the algorithm, the

procedure CBTA is called once and the procedures CL, SMA are called twice requiring

O(n+m) time overall and two insert heap operations are made in O(log k +log (k+1)). The

operations relative to lines (10)-(11), (18)-(20) are made in O(1) time. Thus, the worst case

complexity of the algorithm is O(+

(,)i j

max(, ,)f n m C
1

1
(log log(1))

K

k
k k n

−

=

m+ + + +∑) =

O(+Km + KlogK) time and, since max(, ,)f n m C 2mK < , then O(+Km) time. On

the other hand, the space required by the algorithm is O(K + m), since the father, sons and

heap structures require O(K) space; the basis tree T and its corresponding labels need O(n)

space and the storing

max(, ,)f n m C

()A T employs O(m) space. �

4. CONCLUSIONS.

From this paper, we conclude that the K shortest path trees problem has the same difficulty

as the K minimum spanning trees problem (see Katoh et al. [16]). This result is possible since

in both problems, the kth best solution is adjacent to at least one of the k−1 best previous

solutions. Thus, we design a similar algorithm that takes the advantage of the pivot

(exchange) operation for the basis tree of the shortest path tree problem formulated by

constraints (1)-(3). Furthermore, since problem (1)-(3) is a particular case of the K best

minimum cost flow problem, an open problem consists in verifying if the main result of this

paper holds for this problem. An early result for the K best minimum cost flow problem was

derived by Hamacher [13]. Moreover, since the shortest simple path between two pair of

nodes is a particular case of problem (1)-(3), we ask us self if it is possible to modify the

proposed algorithm to obtain an efficient algorithm to solve the K shortest simple paths

problem? If the answer is affirmative, the bound of Yen [25] will be significantly improved.

On the other hand, the results addressed in this paper are fundamental to develop new

algorithms for the multiobjective shortest path problem from one source node to all other non-

source nodes in a network (see Azvedo et al. [2] and Climaco and Martins [5]).

ACKNOWLEDGMENTS

This work has been partially supported by Spanish Government Research Project

MTM2006-10170.

18

REFERENCES

[1] Ahuja, R., T. Magnanti, J. B. Orlin. 1993. Network Flows. Prentice-Hall, inc.

[2] Azvedo, J., E.Q.V. Martins. 1991. An algorithm for the multiobjective shortest path problem on

Acyclic networks. Investigacao Operacional 11 52-69.

[3] Bellman, R. 1958. On a Route Problem. Quart. Of Appl. Math. 16 87-90.

[4] Brander, A., M. Sinclair (1995). A comparative study of K-shortest path algorithms. In Proc. Of

11th UK Performance Engineering Workshop 370-379.

[5] Climaco, J.C.N., E.Q.V. Martins. 1982. A bicriterion shortest path algorithm. European Journal

of Operational Research 11 399-404.

[6] Dijkstra E. W. 1959. A note on two problems in connection with graphs. Numer. Math. 1 269-

271.

[7] Ford, L. R. 1956. Network Flow Theory. The Rand Corporation Report P-923, Santa Monica,

Calif.

[8] Eppstein, D. 1999. Finding the K shortest paths. Siam Journal on Computing 28 653-674.

[9] Gabow, H. N. 1977. Two Algorithms for Generating Weighted Spanning Trees in Order. Siam

Journal on Computing 6 (1) 139-150.

[10] Goldberg, A. V. 1995. Scaling Algorithms for the Shortest Paths Problem. Siam Journal on

Computing 24 494-504.

[11] Goldfarb D., J. Hao, S. R. Kai. 1990. Efficient Shortest Path Simplex Algorithms. Operations

Research 38 624-628.

[12] Hadjiconstantinou, E., N. Chirstofides. (1999). An efficient implementation of an algorithm for

finding K shortest simple paths. Networks 34 88-101.

[13] Hamacher, H. W. 1995. A note on K best network flows. Annals of Operations Research 57 65-

72.

[14] Hershberger, J., M. Maxel, S. Suri. (2003). Finding the k Shortest Simple Paths: a new algorithm

and its implementation. Proc. 5th Worksh. Algorithm Engineering & Experiments (ALENEX), SIAM.

To appear in ACM transactions on Algorithms (2007).

[15] Hoffman, W., R. Pavley. 1959. A method for the solution of the Nth best path problem. Journal

of the ACM 6 506-514.

[16] Katoh, N., T. Ibaraki, H. Mine. (1981). An Algorithm for finding K Minimum Spanning Trees.

Siam Journal on Computing 10 247-255.

[17] Katoh, N., T. Ibaraki, H. Mine. (1982). An efficient Algorithm for K Shortest Simple Paths.

Networks 12 411-427.

[18] Lawler, E. L. (1972). A procedure for computing the K best solutions to discrete optimization

problems and its application to the shortest path problem. Magnagement Science 18 401-405.

19

[19] Martins, E.Q.V., M. M. B. Pascoal. 2000. A new implementation of Yen’s ranking loopless

paths algorithm. Submitted for publication. Universidade de Coimbra, Portugal.

[20] Martins, E.Q.V., M. M. B. Pascoal, J. Santos. 1997. A new algorithm for ranking loopless paths

algorithm. Technical report, Universidade de Coimbra, Portugal.

[21] Moore, Z. F. (1957). The Shortest Path Through a Maze. In Proceedings of the International

Symposium on Theory of Switching, Part II 285-292.

[22] Perko, A. (1986). Implementation of algorithms for K shortest loopless paths. Networks 16 149-

160.

[23] Pollack, M. (1961). The kth best route through a network. Operations Research 9 578-580.

[24] Sedeño-Noda, A., C. González-Martín. 2006. Shortest Path Simplex Algorithm with a Multiple

Pivot Rule. Tecnival Report nº 2, Departamento de Estadística, Investigación Operativa y

Computación.

[25] Yen, J. Y. 1971. Finding the K shortest loopless paths in a network. Management Science 17

712-716.

[26] Yen, J. Y., 1972. Another algorithm for finding the K shortest loopless network paths. In Proc. of

41st Mtg. Operations Research Society of America 20.

20

	ANTONIO SEDEÑO-NODA
	CARLOS GONZÁLEZ-MARTÍN
	We address the problem for finding the K best path trees connecting a source node with any other non-source node in a directed network with arbitrary lengths. The main result in this paper is the proof that the kth shortest path tree is adjacent to at least one of the previous (k) shortest path trees. Consequently, we design an O(+Km) time and O(K+m) space algorithm to determine the K shortest path trees, in a directed network with n nodes, m arcs and maximum absolute length , where O() is the best time needed to solve the shortest simple paths connecting a source node with any other non-source node.

