
An Efficient Time and Space K Point-to-Point Shortest Simple Paths
Algorithm

ANTONIO SEDEÑO-NODA (asedeno@ull.es)

Departamento de Estadística, Investigación Operativa y Computación (DEIOC). Universidad de La Laguna,
CP 38271- La Laguna, Tenerife (España)

Abstract. We address the problem for finding the K best point-to-point simple paths connecting a given pair of

nodes in a directed network with arbitrary lengths. The main result in this paper is the proof that a tree

representing the kth point-to-point shortest simple path can be obtained by using one of the previous (k-1) trees

representing each one of the previous (k-1) best point-to-point shortest simple paths. The proof requires that, in

each iteration, at most n single-source shortest path computations (re-optimizations) in a network with non-

negative length arcs are needed. In the “optimistic” case, this strategy only needs O(m) time to compute the best

“neighbor” associated with a path tree, that is, the second shortest simple path for a given shortest simple path.

The algorithm runs in O(K) time and uses O(K+m) space to determine the K point-to-point

shortest simple paths in a directed network with n nodes, m arcs and maximum absolute length .

O() is the best time needed to solve the shortest simple paths connecting a source node with any

other non-source node in a network with non-negative length arcs. We provide a clear improve on the space

needed in Yen’s algorithm by a multiplicative factor of O() for each best solution. Moreover, a version of our

algorithm using only O(Kn + m) space runs in an “optimistic” case in O() time. This affirmation

is confirmed by an experimental study where O(K) shorted paths are used to determine the K point-to-point

shortest simple paths in both versions of our algorithm.

max(, ,)nf n m C

maxC

max(, ,)f n m C

2n

max(, ,)Kf n m C

Categories and Subjecy Descriptors: G.2.2. [Discrete Mathematics]: Graph Theory-Networking

General terms: Algorithms, Design, Theory.

Additional Key Words and Phrases: Point-to-point Shortest paths, K best solutions.

1. Introduction

The point-to-point simple shortest path (PPSSP) problem in a directed network of n nodes

and m arcs with arbitrary lengths on the arcs finds a shortest length path from a source node to

a sink node or detects a cycle of negative length. Many important real cases of this problem

appears and the numerous algorithms to solve it are addressed in Ahuja et al. [1] among

others.

The K point-to-point shortest simple paths (KPPSSP) problem determines the K best

solutions of the PPSSP problem. The problem to determine the K shortest paths in a network

has a wide range of applications (see Eppstein [7] for example). An extended bibliography of

This research has been partially supported by Spanish Government Research Project MTM2006-10170.

several K best shortest path problems collected by Eppstein is available at

<http://www.ics.edu/~eppstein/bibs/kpath.bib>. We chronologically cite the papers of the

literature considering only the K shortest simple (loopless) paths problem: Hoffman and

Pavley [12], Pollack [18], Yen [22] and [23], Lawler [14], Katoh et al. [13], Perko [17],

Brander and Sinclair [3], Martins et al. [16], Hadjiconstantinou and Christofides [10], Martins

and Pascoal [15], Carlyle and Wood [4] and Hersberger et al. [11]. The best bound to solve

this problem in directed networks is reached in the early paper of Yen [22]. Yen’s [22]

deviation algorithm runs in where (≥) is the best

bound to solve the PPSSP problem in a directed network and uses space. In

addition, a number of papers have been proposed that refer to several practical improvements

to Yen’s algorithm, however, none has succeeded in improving the worst-case asymptotic

time and space complexity of the problem (see [3, 11, 15, 16, 17]). The algorithm given in

Carlyle and Wood [4] needs only O(space requirements (they ignore the space required to

write out the enumerated paths), but its running times is .

However, when the KPPSSP problem appears as sub-problem of a more complicated

problem can be necessary to store explicitly the best point-to-point simple paths or

alternatively to mantain the way to easy re-compute these paths (see Eppstein [7]). For

example, read/write file operations often require a large amount of time while keeping an

implicit representation of the K best algorithms in RAM can be most useful. On the other

hand, the Carlyle and Wood [4] algorithm is only valid for networks with non-negative

integer lengths (this algorithm uses a binary search on an integer value that allows it to

determine the K near-shortest simple point-to-point paths). Moreover, additional practical

improvements can only be used in networks with non-negative length (modification A) and

when paths containing cycles are allowed (modification D). We also consider the Hersberger

et al. [11] algorithm based on a replacement paths algorithm. Hersberger et al. [11] claim that

their algorithm runs in an “optimistic” case in O() time when the replacement

paths algorithm does not fail (only two shortest path computations are needed in each right

execution replacement path algorithm). Even so, in the “optimistic” case at least seven

shortest paths computations are needed for each new discovered path.

maxO((, ,))Kn f n m C maxO((, ,))f n m C O()m

2O()Kn m+

)m

max maxO((, ,)(log log))Kn f n m C n C+

max(, ,)Kf n m C

For undirected networks, Katoh et al. [13] introduce an time and

space algorithm. This algorithm was efficiently implemented in Hadjiconstantinou

and Christofides [10].

maxO((, ,))K f n m C

O()Kn m+

2

The K point-to-point shortest paths problem in which paths are not required to be simple

are easier. The best algorithm for this problem is due to Eppstein [7]. The algorithm of

Eppstein [7] computes an implicit representation of the K paths in time

and space. Each path can be output in order in O(

O(log)m n n K+ +

O()K m+ log)n K+ additional time,

therefore, the K shortest paths can be enumerated in order by Eppstein algorithm [7] in

. Clearly, this algorithm can be used to determine the K point-to-

point shortest simple paths in a network without directed cycle since any path in an acyclic

network is a simple path. The algorithm given by Sedeño-Noda [21] runs in

O(log (log))m n n K n K+ + +

O(log (log))Km n n K n
n

+ + + time using O()K m+ space improving the bounds in [7] when

an explicit enumeration in order of the best solutions is required.

In this paper, we prove that a tree representing the kth point-to-point shortest simple path

can be obtained using one of the previous (k-1) trees representing each one of the previous (k-

1) best point-to-point shortest simple paths. This result is achieved by showing that in each

iteration, at most n single-source shortest path computations (re-optimizations) in a network

with non-negative length arcs are needed. In the “optimistic” case, the proposed scheme only

needs time to compute the best “neighbor” associated with a tree. That is, we introduce

an ad-hoc procedure to compute the second point-to-point simple path for a given point-to-

point shortest simple path. This procedure takes advantage of the structural relations between

the shortest path tree and the second best path tree. Hence, our algorithm is not a deviation

algorithm and it does not use a replacement paths algorithm as a subroutine. In any case, we

propose an time and

O()m

maxO((, ,))Kn f n m C O()K m+ space algorithm to determine the K

point-to-point shortest simple paths in a directed network with n nodes, m arbitrary length

arcs and maximum absolute length . Note that is the best time needed

to solve the shortest simple paths connecting a source node with any other non-source node in

a network with non-negative length arcs. In each iteration of our method, the kth best point-

to-point shortest simple path is calculated and then, the way to determine the second best

point-to-point simple path associated with the kth best solution is computed and stored. Note

that this approach improves the space needed in Yen’s algorithm by a multiplicative factor of

 for each best solution. Moreover, a version of our algorithm using only

maxC maxO((, ,))f n m C

2O()n O()Kn m+

space can run in the “optimistic” case in time. That is, when the current k

best solutions are stored, the determination of the (k+1)th best solution using our ad-hoc

maxO((, ,))K f n m C

3

procedure requires in the “optimistic” case O(time plus only one shortest path

computation. This affirmation is confirmed with an experimental study where shorted

paths computations are used to determine the K point-to-point shortest simple paths for both

versions of the algorithm. However, our algorithm does not improve the bounds for the

undirected network. That is, when a directed version of the undirected network is considered,

our algorithm works as in the directed case. In the case that the network is acyclic, our

algorithm runs in using only

)m

O()K

maxO((, ,))K f n m C O()K m+ space. Clearly, Eppstein [7] and

Sedeño-Noda[21] are better in this case, but when the acyclic property is unknown a priori,

our algorithm takes advantage of this situation while other “general” algorithms contemplated

in the literature do not.

After this introduction, in section 2, the linear programming formulation of the PPSSP

problem and the K point-to-point shortest simple path problem are given. In section 3, we

introduce the main theoretical results, which the algorithm is based on. Section 4 contains a

detailed pseudo code and an explanation of the proposed algorithm. Additionally, the worst-

case time and space theoretical complexity of the algorithm is proven. Section 5 includes a

report on the computer results of our method from a subset of the experiment carried out

using the networks generator provided in Cherkassky et al. [5]. Finally, in section 6, we offer

our conclusions.

2. The point-to-point shortest simple path problem and the K point-to-point shortest simple
paths problem.

Given a directed network G = (V, A), let { }nV ,...,1= be the set of n nodes and A be the set

of m arcs. For each arc , let Aji ∈),(∈ijc be its length and { }max (,)
max iji j A

C
∈

= c . The network

has two distinguished nodes: the source node s and the sink node t. We denote by

{ }| (,)i j V j i A−Γ = ∈ ∈ for all node i V∈ . We assume without loss of generality that the

directed network G does not contain any arc emanating from sink node t. Note that in any

case, a simple path from s to t does not use arcs emanating from t. Similarly reasoning allows

us to suppose that the directed network G does not contain any arc arriving at source node s.

Let be two distinct nodes of G = (V, A), we define a simple path ,i j V∈ ijp as a sequence

{ }1 1 2 2 1 1, (,), , , , (,),l l l li i i i i i i i− − of non-repeated nodes and arcs satisfying , and for

all , . A directed simple cycle is a simple path such that the only

1i i= li = j

1 1w l≤ ≤ − 1(,)w wi i A+ ∈

4

repeated nodes are and (). The directed network G is acyclic if it does not contain any

directed (simple) cycle. The length of a directed path p is the sum of the arc lengths in the

path, that is, . The point-to-point shortest simple path (PPSSP) problem

consists in finding a shortest simple path from node s to node t or in determining a negative

cycle, that is, a directed cycle of negative length.

1i li iip

(,)

() ij
i j p

c p c
∈

= ∑

If a flow is associated with each arc then the following linear programming

problem represents the PPSSP problem (see Ahuja et al. [1]):

ijx),(ji

{ }
{ }

{ }

(,)

:(,) :(,)

Minimize () (1)

subjet to
1 if

 0 if , (2)
1 if

 0,

ij ij
i j A

ij ji
j i j A j j i A

ij

c x c x

i s
x x i V s t

i t
x

∈

∈ ∈

=

=⎧
⎪− = ∀ ∈ −⎨
⎪− =⎩

≥

∑

∑ ∑

 (,) (3)i j A∀ ∈

The above problem is a special case of the minimum cost network flow (MCNF) problem.

The network simplex algorithm can be used to solve the above problem by taking advantage

of the fact that any basis of the MCNF problem is a spanning tree T of G. Let X be the

convex polyhedron defined by constraints (2)-(3) (decision space). The following two

literature results hold (Ahuja et al. [1]): (i) Any feasible solution of the PPSSP problem is a

vertex of X and vice-versa and (ii) Every vertex of X is associated with a directed spanning

tree rooted at s.

A⊆

A directed out-spanning tree is a spanning tree rooted at node s such that the unique path

in the tree from node root s to every other node is a directed path. Note that in this kind of

tree, each node { }\i V s∈ has only one node predecessor in the tree (), that is, its in-

degree is one. In the rest of paper, we refer to a directed out-spanning tree as tree.

()ipred T

Distance labels of the nodes (negative dual variables) corresponding to a tree T are

obtained by setting and solving () 0sd T = () () 0ij i jc d T d T+ − = , (,)i j T∀ ∈ . Thus, given a

tree T, we define the reduced cost () () ()ij ij i jc T c d T d T= + − , (,)i j A∀ ∈ .

5

Let be the objective function value of the tree T. Note that

. Therefore, minimizing is equal to finding the shortest simple path

from node s to node t. Additionally, since each node

(,)
() ij ij

i j T
C T c x

∈

= ∑

() () ()tc x d T C T= = ()c x

{ }\j V s∈ has only one node

predecessor, we define ()()
jj pred T jx T x= . Note that if (,)i j T∈ and ()jt D T∈ , then 1ijx =

and , otherwise, if and () 1jx T = (,)i j T∈ ()jt D T∉ then 0ijx = and . We also

define

() 0jx T =

()iD T to be the set of descendants of node i in the tree T, that is, the set of nodes in the

sub-tree rooted at i, including node i.

In a T-exchange, an arc with reduced cost (,) \i j A T∈ ()ijc T and ()ji D T∉ is added to T

and ((),)jpred T j is deleted from T yielding a new tree T ′ . Once a T-exchange is performed,

the distance labels in T are updated in the following way: ′ () () ()k k ijd T d T c T′ = + ,

. Furthermore, the objective function value is ()jk D T∀ ∈ () () () ()t t ij jd T d T c T x T′ = + since

() ()j jx T x T ′= .

For an optimal tree , we obtain the following optimality conditions: *T
*() 0, (,)ijc T i j A≥ ∀ ∈ . Hereinafter, we consider that the length of any arc is Aji ∈),(

*() 0ijc T ≥ instead of , since determining the shortest path tree with length arcs c is

equivalent to determining the shortest path tree with reduced cost length arcs

ijc

*()c T in G

(Ahuja et al. [1]). Therefore, once an optimal tree is obtained, we can use the Dijkstra [8]

algorithm to determine possible alternative paths in G from node s to node t considering non-

negative lengths. Therefore, without loss of generality, we consider

*T

*()ij ijc c T= for all

 in the rest of the paper. Aji ∈),(

The K point-to-point shortest simple paths problem consists in determining the K best

different solutions of the problem (1)-(3). In other words, if we denote by the path tree

from node s to node t in the tree T then, the problem require identifying the K best trees

with different

()stp T

kT

()k
stp T for { }1,...,k ∈ K such that 1 2() () ... ()K

t t td T d T d T≤ ≤ ≤ and for any

other tree with pT () ()p
st st

kp T p T≠ for all { }1,...,k K∈ is . () ()p K
t td T d T≥

6

3. Main Theoretical Results.

In this section, we introduce and prove the basic results to the efficient resolution of the K

point-to-point shortest simple path problem. We begin by introducing the following

definition:

Definition 1. Two trees T and are adjacent if and only if both have arcs in common,

that is, both trees differ in only one arc.

T ′ 2n−

Therefore, the tree T can be built from the tree T by a T-exchange where the entering arc

is just the arc (, and (,

′

) \i j T T′∈) \p q T T ′∈ is the leaving arc. In addition, if the path tree

from node s to node t in T must be different to the path tree from node s to node t in T, then

the entering arc (,

′

) \i j T T′∈ must satisfy () 1jx T = , that is, node j must belong to the path

tree from node s to node t in T. Moreover, let T and T ′ be two trees that differ in the p n<

arcs. Then the following property given in Sedeño-Noda and González-Martín [20] holds:

Proposition 1. If T and T differ in p < n arcs, where E = { ,…, } are the arcs in

 that are not in T, then: (1) E does not contain a directed cycle; (2)

′ 1 1(,)i j (,)p pi j

T ′ u vj j≠ holds for all

{ }, 1,...,u v p∈ with u v≠ ; (3) These arcs define the smallest T-exchange sequence to obtain

 from T, and the order in which these T-exchanges are performed is irrelevant.. T ′

Given any tree T, we call a multiple T-exchange to the operation where p < n arcs

satisfying proposition 2 are entered simultaneously in T. The following results given in

Sedeño-Noda [21] holds:

Lemma 1. Given a tree T of an acyclic directed network G, let T ′ be the tree containing a

different path tree from node s to node t that is obtained from T by making a multiple T-

exchange with the arcs (){ }1 1 2 2, , (,),..., (,)p pi j i j i j with non-negative reduced cost and with

2 p n≤ < . Then ()td T ′ is greater than or equal to the distance label of the node t of at least

one of the p trees that can be obtained by a T-exchange with only one arc in the set

(){ }1 1 2 2, , (,),..., (,)p pi j i j i j .

7

Given a tree T, we denote by a subset of arcs of A\T and ()A T

{ }(()) | (,) ()i A T j V j i A T−Γ = ∈ ∈ (the set of predecessor nodes of node i in the directed graph

(V, A(T)). Lemma 1 establishes that if network G is acyclic and T contains the best s-t path in

the directed graph (V,), the second best s-t path is obtained from T by a T-exchange

with the entering arc

()A T T∪

{ }() (,) ()
(,) arg min () : () and () 1A T ul l lu l A T
i j c T u D T x T

∈
= ∉ = . Then, for any

node j with () 1jx T = , we also define { }*

(())
arg min () : ()

j
j ij

i A T
i c T i

−∈Γ
= jD T∉ . Therefore,

{ }*() ()
(,) arg min ()

jst
A T i jj p T

i j c T
∈

= .

Given a tree T and a non-tree arc , we obtain the basis tree T with ()(,)A Ti j ′

() ()st stp T P T′ ≠ . But, if network G is not acyclic, st ()p ′T co

). Clea

uld not be the second best s-t path

in the directed graph (V, ()A T ∪ rly, the second best s-t path in this graph contains

the best sub-path from j to t for some j with ()jx T

T

1= . Therefore, we must identify an

alternative path from node s to each node j with ()stj p T∈ not A T with

= and T , tha

using arcs (,)i j ∈

()jx T i D∉ t is, the nodes and arcs that can not be considered for a fixed

node

()

1 ()j

()stj p T∈ are:

(1) with (non-tree arcs) and (,) ()u j A T∈ ()ju D T∉ ((),j)pred T j .

(2) Any node belonging to ()j tp T′ where j′ is the next node to node j in ()jtp T . Or

equivalently , any arc arriving at any node in ()j tp T′ and any arc leaving from any node in

()jtp T (including node j since we search for paths from node s to node j).

Thus, we must identify an alternative path from node s to node j with using some

descendant node(s) of node j not included in

() 1jx T =

()jtp T . For example in Figure 1, several paths

arriving at node ()stj p T∈ can be found using the arc satisfying . They are

, and . For a

fixed node

(,)i j ()ji D T∈

3 2s i i i→ → → → j j j3 4 2s i i i i→ → → → → 3 4 1 2s i i i i i→ → → → → →

()stj p T∈ , we denote by ()jB T the set of arcs satisfying (1) and (2) and we set

() () ()j jB T A T T B T= ∪ − the arcs in that can be used to find an alternative path

from node s to node j.

()A T T∪

8

s

i1

i3 i4i5

i2

j

t

tree arc
non-tree arc

i

tree arc
non-tree arc

s

i

i1

i3 i4i5

i2

j

t

Figure 1a. Initial tree arcs and non-tree arcs. Figure 1b. Tree arcs and non-tree arcs to determine

the alternative path from node s to node j.
Note that for a fixed node j with () 1jx T = , for any node ()jv D T∈ with among

all arcs (, arriving at v with , we only must take into account those with the

least reduced cost. For example in Figure 1a, any sub-path to node j crossing node from

any node u with (

() 0vx T =

)u v ()ju D T∉

2i

()ju D T∉ { }3 4,u i i=) always uses the arc with the least reduced cost, that

is, or . In Figure 1b) for node j, the arcs 3 2(,)i i 4 2(,)i i ()jB T appear with the exception of the

arc , because we suppose that the arc has the least reduced cost among the

incoming arcs in node . Then, we obtain the next result:

3 2(,)i i 4 2(,)i i

2i

Lemma 2. Given a tree T, with a set of arcs with non-negative reduced cost, the best

alternative path from node s to some node j with

()A T

() 1jx T = using arcs in ()jB T contains only

one non-tree arc (, with and)u v ()ju D T∉ ()jv D T∈ .

Proof. Let be the best alternative path to the tree path ()sjl T ()sjl T ()sjp T from node s to

node j using arcs ()jB T . Note that must contain at least one non-tree arc with ()sjl T (,)y z

()jy D T∉ and . Otherwise, an alternative path to the tree path ()jz D T∈ ()sjp T from node s

to node j does not exist. Let be the sub-path from node v to node j with

 containing only descendant nodes of node j. Clearly, the predecessor node of node

() ()vj sjl T l T⊂

()jv D T∈

9

v in the path is a node u with ()sjl T ()ju D T∉ . Therefore, () () (,) ()sj su vjl T l T u v l T= ∪ ∪

where is a non-tree arc with (,)u v ()ju D T∉ and ()jv D T∈ . Since a path tree from s to u

exists with zero reduced costs and is the best alternative path to the tree path ()sjl T ()sjp T ,

then the length of must be equal to the length of ()sjl T () (,) ()su vjp T u v l T∪ ∪ . Therefore, we

have identified an alternative optimal path from node s to node j that uses only one arc

satisfying ,

(,)u v

() 0vx T = ()ju D T∉ and ()jv D T∈ . �

Note that lemma 2 holds for any node ()ju D T∈ . Then, we define to be the shortest

path from node s to node j with

* ()sjl T

() 1jx T = using arcs in ()jB T .

Lemma 3. Given a tree T, with a set of arcs with non-negative reduced cost, the best

alternative path from node s to node j with

()A T

() 1jx T = not using the ((),j)pred T j arc and

nodes in the ()jtp T with exception of j is the path with minimum length between paths

{ , } using the arcs in . *() (,)si jp T i j∪ * ()sjl T ()A T T∪

Proof. Note that by lemma 1, is the best alternative path to the path tree *() (,)si jp T i j∪

()sjp T that does not use descendant nodes of node j with exception of j and does not use the

arc ((),)jpred T j . On the other hand, by definition, is the best alternative path using

some nodes that are descendants of node

* ()sjl T

j not in ()jtp T (with exception of j) and does not

use the arc ((),)jpred T j . Clearly, the best alternative path to the tree path ()sjp T that does

not contain the arc ((),)jpred T j and nodes in ()jtp T with exception of j is the path with

minimum length of these two alternatives. �

Note that if an alternative path to the tree path ()sjp T better than the alternative paths

commented on lemma 3 exists, this alternative path uses the arc ((),j)pred T j and/or contains

some nodes in ()jtp T additionally to node j. But in this case, we have identified an

alternative path from node s to some node j′ belonging to ()stp T not using ((),)jpred T j′ ′

arc neither nodes in ()j tp T′ with exception of j′ with length equal to or less than the

10

alternative path to ()sjp T . In this case, when we search for an alternative best path for the

current path ()stp T , we will obtain the same or best utility by determining the best alternative

path from node s to j′ instead of to node j.

Denote by the alternative path with minimum length between paths

{ , } for a node j with

()sjAp T

*() (,)si jp T i j∪ * ()sjl T () 1jx T = . Let * ()
sj

Ap T be the alternative path with

minimum length among ()sjAp T paths with ()stj p T∈ . Then, we obtain the next result:

Theorem 1. Given a tree T, with a set of arcs with non-negative reduced cost. Let node ()A T
*j be the node determining the alternative minimum length path * ()

sj
Ap T . Let be

the set of non-tree arcs in

* ()
j

NT T

* ()
sj

Ap T and let T ′ be the tree obtained from T making a T-

exchanges sequence with the arcs in . Then * ()
j

NT T T ′ is the second best solution of the

PPSSP problem in the network G=(V,). ()A T T∪

Proof. Theorem holds since * *() ()
sj j t

Ap T p T∪ is the minimum alternative length path to the

tree path ()stp T . Therefore, when all the T-exchanges with the arcs in are made, the

distance label of any node in the tree path from node

* ()
j

NT T

*j to node t increases in a minimum

amount. Therefore, the increase in the distance label of node t is minimal nd T ′ is the

second best solution of the PPSSP problem in the network T ∪

 a

G=(V T). � , ()A

We are interested in generating the K best point-to-point shortest simple paths in order

without repeating the calculation of the same best solution. For that, given a tree T, let

be the set commented on in theorem 1. Let and let T

*j
NT

*
*(,) ()

j
i j NT T∈ ′ be the tree obtained

making a T-exchanges sequence with the arcs in . Then, we set * ()
j

NT T

{ }*() () (,)A T A T i j= − and { }*() \ (,) : ()
j t

A T A T u l A l p T′ ′= − ∈ ∀ ∈ ′ . Note that does

not contain any incoming arc in any node of the tree path

()A T ′

* *() ()
j t j t

p T p T′ = . Therefore, any

tree obtained from T ′ subsequently contains the same sub-path from node i to node t. In

addition, any tree obtained from T does not contain the sub-path from node i to node t in T ′

11

since now does not contain . From these comments, it is easy prove that each

best solution is obtained one time.

()A T *(,)i j

Since, we have fixed the sub-path ()itp T ′ , we can delete from all arcs ()A T T′ ∪ ′

{ }(,) : () itu l A u p T ′∈ ∀ ∈ with the exception of the arcs in ()itp T ′ since any alternative path

from node s to node t will not use these arcs. That is, we define

{ } { }*() (,) : () (,) : () ()it itj t
E T A u l A l p T u l A u p T p T′ ′= − ∈ ∀ ∈ − ∈ ∀ ∈ ∪′ ′ .

Let be the shortest path tree rooted in s for the directed graph (V,). Note that ()E TT ′′ ()E T ′

()itp T ′ is contained in and the descendant nodes of node i in ()E TT ′′ ()E TT ′′ are just the nodes

belonging to ()itp T ′ . In other words, the sub-tree hanging from node i in is the sub-path ()E TT ′′

()itp T ′ . Then, we interchange T by ′ ()E TT ′′ and ()A T ′ by () ()() () \E T E TA T E T T′ ′′ ′ ′= in our

arguments. Note that now, any non-tree arc in ()A T ′ has non-negative reduced cost and

theorem 1 can be applied. Thus, from the later lemmas, theorems and the binary partition

scheme, we can conclude without proof, one of the main results in this paper:

Theorem 2. A tree associated to the kth best point-to-point shortest simple path can be

obtained from a tree associated to at least one of the previous (k-1)th best point-to-point

shortest simple paths.

4. An Efficient Algorithm for the K Point-to-Point Shortest Simple Paths Problem.

This section details the algorithm using the previous results to solve efficiently the K

point-to-point shortest simple paths problem. Additional notation is first introduced.

Given a basis tree T, the proposed method uses the distance label , the depth label

 and the predecessor label

()ud T

()udepth T ()upred T for each u V∈ . We assume that in the

adjacency node list { }| (,)iT j V i j T+ = ∈ ∈ the values of are stored. We initially set

,

ijc

() 0sd T = () 0sdepth T = and ()spred T s= . These tree indices can then be computed in O(n)

time by depth-first search for T starting in node s (see Ahuja et al [1] for example). In order to

determine if an arc with satisfies (,)l u ()stu p T∈ ()ul D T∈ or not, we define to be

the major depth of a node such that

()llow T

()stu p T∈ ()ul D T∈ . Therefore, if

with then and if

() ()l ulow T low T≥

()stu p T∈ ()ul D T∈ () ()l ulow T low T< with ()stu p T∈ then . ()ul D T∉

12

Note that labels can be computed in O(n) time by depth-first search for T once the

predecessor labels and depth labels are known.

()llow T

Additionally, we associate a subset of non-tree arcs with each tree T. For each

calculated tree , the arc is calculated and it is stored together with the

index p indicating the associated pth best tree in a heap using as key the length of the path

()A T
pT *

*(,) ()p
j

i j NT T∈

* *() (p
sj j t

)pAp T p T∪ , that is, the way to obtain the second best simple path in

(, ())p pG V A T T= ∪ . We denote this heap by H in the algorithm. Assuming that t is the size

of a heap, the operation Insert requires an effort O(log t) and the operation of extracting the

element of the min-key (Extract First) takes O(1) time. The Create Heap operation takes O(1)

time.

On the other hand, in order to simplify the examination of the set of arcs for a given

tree T, we maintain an additional Boolean label named for each node i

()A T

()ieligible T V∈ .

 is FALSE if and only if the arc ()ieligible T ((),i)pred T i can not be chosen to leave the tree T

(for example, node i belongs to a fixed sub-path). Otherwise, is TRUE. Given a

basis tree T and its corresponding set of non-tree arcs , we assume that in the adjacency

node list

()ieligible T

()A T

{ }(()) | (,) ()+Γ = ∈ ∈i A T j V i j A T the value of and Boolean label are

stored. is TRUE for arc)

ijc ()ijeligible T

()ijeligible T (,) (i j A T∈ if and only if this arc can be chosen to

enter into the tree T. Initially the ()ije T is TRUE for al (,)i j ilabe eligibl l arc n G. l

Using the above notation, one way to easily implement the selection of * ()
sj

Ap T and,

therefore, the arc , consists in applying the following procedure for a tree T

with a fixed sub-path from node u to node t:

*
*(,) ()

j
i j NT T∈

13

Procedure (MAP) Minimum_Alternative_Path(u, var MinLength, T, , , ,

, var i, var

()AT ()d T ()pred T

()low T *j);

(1) = ∞;MinLength = ∞;MinDesc =() TRUEieligible T ∀ ∈i V ;

(2) =() FALSEieligible T where ′∀ ∈ ()u ti p T ′u is the next node to node u in ; ()utp T

(3) While () do ≠u s

(4) For all −∈ Γ (())ul AT do

(5) = ∞luc ;

(6) If (() and (==() TRUElueligible T ()leligible T TRUE==) and ()) ≠()upred T l

(7) = + −() ()lu lu l uc c d T d T ;

(8) If ((<luc MinLength) and ()) <() ()l ulow T low T

(9) = luMinLength c ; ; =i l =*j u ;

(10) If ((<luc MinDesc) and ()) ≥() ()l ulow T low T = luMinDesc c ;

(11) If (<MinDesc MinLength)

(12) Determine using the eligible nodes and arcs; * ()sul T

(13) If (length of < MinLength)) * ()sul T

(14) Minlength = length of ; * ()sul T

(15) Let i be the predecessor node of node u in ; * ()sul T =*j u ;

(16) =() FALSEueligible T ;

(17) = ()uu pred T ;

(18) =MinDesc MinLength ;

The above procedure can not be applied unless the tree T satisfies that the descendant

nodes of node are just the nodes in the tree path u′ ()u tp T′ , where node u is the next node to

node u in the tree path

′

()utp T . Therefore, the procedure MAP is called with parameters

being the last node in the tree path from s to t that is fixed in T. The variable

u

MinLength

stores the length of the best alternative path from s to t with fixed sub-path from u to t. This

procedure returns a pointer to the eligible arc belonging to if it exists, otherwise

it returns NULL. Given a node not fixed (eligible), lines (4)-(10) determine the

eligible arc (, satisfying with minimum reduced cost and these lines allow in

*(,)i j ()A T

()stu p T∈

)l u ()ul D T∉

MinDesc to store the minimum reduced cost value of eligible arcs such that .

The procedure (line 12) determines using eligible nodes and eligible arcs only when

(,)l u ()ul D T∈

* ()sul T

MinDesc is less than MinLength (the minimum increase in the distance label of node t

14

currently known). If the length of is less than * ()sul T MinLength then, the procedure updates

 and *(,)i j MinLength . Next, the procedure backtracks on u using the predecessor labels and

updates MinDesc , and for the current node u. () FALSEueligible T =

Note that, if then, the distance labels obtained solving can be used in

the determination of , that is, when

()uu pred T′ = * ()sul T

* ()sul T′ () FALSEueligible T = , we re-optimize the shortest

path from s to . For example, let u′
uBT be the shortest path tree obtained considering the arcs

in ()uB T . Now, the distance label of any node belonging to the sub- tree ()
u uBT B T′∩ is still

optimal. Let p be a node not connected in ()
u uBT B T′∩ , then using lemma 2, its initial label

distance becomes pd ′ { }min () () : in the sub-tree ()
u u up qp p uB B Bd c T d T q T B ′′ = + ∩ T . Moreover

the execution of the label setting shortest path algorithm determining can be stopped

when node u becomes permanently labeled or the distance label of the new permanently

labeled node becomes greater than or equal to

* ()sul T

MinLength .

Next, we report on the computational effort of the procedure MAP. Lines (1-2) require

 time. Lines (4)-(10) for all u in the tree path are done in . In the worse

case, line (12) is executed

O()n ()sup T O()m

()sup T times, that is, where is

the best time needed to solve the point-to-point shortest simple paths in a directed network

with non-negative length arcs. The remaining lines require time. Therefore, the

procedure MAP employs time and uses space. However, note that

procedure MAP could execute line (12) less than

maxO((, ,))nf n m C maxO((, ,))f n m C

O(1)

maxO((, ,))nf n m C O()n

()sup T times. Moreover, it is possible that

for a given pair T and , line (12) will not be executed. In this “optimistic” case the

procedure MAP requires time. For example, when the network is acyclic an arc

satisfying does not exist and MAP employs time.

()A T

O()m (,)l u

()ul D T∈ O()m

We use additional data structures as in Gabow [9] to reduce the memory space needed by

the algorithm. Thus, let us assume that the first k trees kT ′ , { }1,...,k ′∈ k , have been

calculated. Then, we use the following structures to store these trees as a directed out tree:

[]father k′ stores the index p associated with basis tree and a pointer to the arc

 in G that determines the way to obtain the tree

pT

*
*(,) ()

j
i j NT T∈ kT ′ ([]father k′ ={p, }).

Each element of the list contains the index and a pointer to the arc

*(,)i j

[]sons k′ *
*(,) ()

j
i j NT T∈

15

in G that allowed the tree to be obtained from pT kT ′ . The list []sons k′ is arranged in such a

way that the indices increase from left to right ([]′sons k ={{ 1p , },…,{*
1(,)i j rp , }}

and).

*(,)ri j

1 ... rp p< <

Using this information, any tree can be derived from the initial optimal basis tree

and by applying the next recursive procedure.

kT *T
*()A T

Procedure (BT) BuildingT (k, father , so , var , var , var T, var); ns ()d T ()pred T ()AT

(1) If (k ≠ 1)

(2) BT (, [].father k p father , so , , , T,); ns ()d T ()pred T ()AT

(3) * *(,) [].(,)i j father k i j= * ()
j

pred T i; = ;

(4) { } { }= − ∈ ∀ ∈ − ∈ ∀ ∈ ∪*() () (,) () : () (,) () : () ()it itj t
E T AT u l AT l p T u l AT u p T p T ;

(5) Let be the shortest path tree rooted at s for the directed network

; Let and be the distance and predecessor labels associated

with T;

= ()E TT T

(, ())V E T ()d T ()pred T

The procedure BT is called with *T T= , and *() ()d T d T= *() ()pred T pred T= , where

 is an optimal tree and the index *T k p= of the tree to be constructed. The procedure BT

backtracks on index k = p using father until k = 1. Therefore, note that path tree from k = 1 to

k = p in the tree of trees at most have n-1 nodes since in each tree an additional node i is fixed

in the sub-path from i to t. In an iteration k, at the beginning of the execution of line (3), the

procedure BT has built the tree [].father k pT . Line (3) modifies the pred label of node *j using

the arc) to identify the fixed sub-path from node i to no ()k
it

*(,i j de t (p T). Since the

distance labels of some descendant nodes of node i (not included in ()k
itp T) can not be

optimal for the current sub-problem, lines (4) and (5) built kT as was indicated in section 3.

Note that a re-optimization process can be attained from T in line (3) to obtain kT in line (5)

as was mentioned in section 3, for example using lemma 2. The running time of each iteration

of procedure BT (lines (3)-(5 max,))C . Therefore, the complexity of the

proced max, ,))m C since at most n-1 recursive calls are p

)) is f n m

ure BT is O((nf n

O((,

 erformed.

The complete algorithm with the above notation and remarks is presented on next page.

The algorithm starts with an optimal tree = *T T . The index of the number of best solutions k

is set to 1. All necessary labels associated with the basis tree T are the computed. The arc

16

(,)i j is determined by calling the procedure MAP(t, MinLength, T, A, , ()d T

()pred T ,). The heap H is created and the element {(, , 1, ()low T)i j ()tMinLength d T+ } is

inserted in H wherever arc exists. The algorithm then starts with a loop until the K best

solutions are identified or no more feasible solutions are possible. Thus, in each iteration, the

first element in the heap is extracted. This element identifies the way to obtain the (

(,)i j

1k +)th

best solution. In the algorithm { }[1] , (,)father k p i j+ = lets us determine . Then, the

algorithm adds {

1kT +

}1, (,)k i j+ at the end of to reconstruct in a future, the tree T for all

descendant of in the tree of trees. Now, in the algorithm is reconstructed by the

procedure BT and the tree indices of are calculated. Then, the algorithm identifies the tail

(leaving) node u = i of the arc

[]sons p

1kT + pT
pT

[].(,)father p i j being the fixed node in the ()p
stp T with minor

depth for p > 1. Otherwise, u = t since in the fixed node is only t. Next, all used arcs in

the determination of trees that are sons of are marked ineligibles. Then, the new arc

in

*T
pT (,)i j

()pA T is found by adequately calling the procedure MAP. The resulting arc (if it exists)

and the index p are stored in the heap H using the key value ()tMinLength d T+ where

MinLength is the value calculated in the procedure MAP. The algorithm then increases the

index k and updates . Note that in this case is determined from and kT kT pT [].(,)father k i j

as in BT procedure (Lines (19)-(21)). The necessary tree indices of are calculated. Note

that has no sons and therefore any arc in A is eligible (line 17). Finally, for this new best

tree, the arc arc in is determined and the element { (, , k,

kT
kT

(,)i j (kA T))i j

()k
tMinLength d T+ } is inserted in H.

17

K Point-to-Point Shortest Simple Paths (KPPSSP) Algorithm;

(1) Let be an optimal basis tree; *T

(2) Set ; ; = 1k *T T=

(3) Compute labels , , for a tree T; ()d T ()pred T ()low T

(4) Create Heap H;

(5) MAP(t, MinLength, T, A, , , , i, j); ()d T ()pred T ()low T

(6) If ((, ≠ NULL) Insert {(, , k, } in H;)i j)i j + ()tMinLength d T

(7) While ((k < K) and (H ≠ ∅)) do

(8) Extract first {(, , C, p} of H;)i j

(9) { }+ =[1] ,(,)father k p i j ; Add { }+ 1,(,)k i j at the end of ; []sons p

(10) = *T T ; ; = *() ()pred T pred T

(11) BT(p, father ,so , , , T, A); ns ()d T ()pred T

(12) Compute labels for a tree T; ()low T

(13) u = leaving node of arc when p >1; otherwise u = t; [].(,)father p i j

(14) For all { } ∈,(,) []l i j sons p do ; =() FALSEijeligible T

(15) MAP(u, MinLength, T, A, , , , i, j); ()d T ()pred T ()low T

(16) If ((, ≠ NULL) Insert {(, , p, } in H;)i j)i j + ()tMinLength d T

(17) For all { } ∈,(,) []l i j sons p do ; =() TRUEijeligible T

(18) Set = + 1k k ;

(19) { } { }= ∪ −[].(,) ((),)jT T father k i j pred T j ; =()jpred T i ;

(20) { } { }= − ∈ ∀ ∈ − ∈ ∀ ∈ ∪() (,) : () (,) : () ()jt it itE T A u l A l p T u l A u p T p T ;

(21) Let be the shortest path tree rooted at s for the directed

network ; Let and be the distance and

predecessor labels associated with T; Compute labels for a tree T;

()E TT T=

(, ())V E T ()d T ()pred T

()low T

(22) u = leaving node of arc ; [].(,)father p i j

(23) MAP(u, MinLength, T, A, , , , i, j); ()d T ()pred T ()low T

(24) If ((, ≠ NULL) Insert {(, , k, } in H;)i j)i j + ()tMinLength d T

Theorem 3. The KPPSSP algorithm computes the K point-to-point shortest simple paths in

 time and O(space in a directed graph G. maxO((, ,))Knf n m C)K m+

Proof. In the beginning of the algorithm, the determination of requires

 time (see Ahuja et al. [1] to find a detailed bounds for this function). The

initialization and calculation of the labels of the tree T involves time. The calculation of

1T T= *

maxO((, ,))f n m C

O()n

18

the arc (, by the procedure MAP requires an effort time and the

operation of create and insert for first time in the heap takes O(time. Clearly, the algorithm

makes at most K iterations. In each iteration of the algorithm, the procedure MAP is called

twice and procedure BT is called once requiring time overall, and two

insert heap operations are made in O(log k +log (k+1)). The labels of a tree T are calculated

twice in each iteration of the loop in time. The complexity of lines (20)-(21)) is

. Remainder operations in the loop are made in O(time. Thus, the worst-

case time complexity of the algorithm is

+). Since

)i j maxO((, ,))nf n m C

1)

maxO((, ,))nf n m C

O()n

maxO((, ,))f n m C 1)

maxO((, ,))f n m C

1

max
1
(log log(1) (, ,))

K

k
k k nf n m C

−

=

+ + +∑ 2mK < and O() , then

 time. On the other hand, the space required by the algorithm is

, since the father, sons and heap structures require space; the tree T and its

corresponding labels need space and the storing A uses space. �

max(, ,)f n m C O()m≥

maxO((, ,))Knf n m C

O()K m+ O()K

O()n O()m

Suppose now that tree (or the fixed sub-path kT ()k
itp T) is stored for each k best

solution. In this case, the algorithm uses O()Kn m+ memory space and does not need the

procedure BT (lines (20-21) substitute line (11) when p > 1). In this case the running time of

the algorithm is still , but in the “optimistic” case when procedure MAP

takes time, only one (two) additional shortest path computation (line 21) is (are) made.

In this last case, we say that the algorithm runs optimistically in time. In

the next section, we introduce a computational experiment that shows that the number of

shortest path computations made by the proposed algorithms are .

maxO((, ,))Knf n m C

O()m

maxO((, ,))Kf n m C

O()K

5. Computational results.

We have implemented two version of our algorithm: original KPPSSP algorithm denoted

by KPPSSP1 and a version storing all best trees using O()Kn m+ memory space denoted by

KPPSSP2. In the current implementation of both algorithms, H is a vector and the operation

to determine its minimum is sequential, that is, takes instead of O(l . Since in our

experiment , this fact does not have a significant effect in the empirical

performance of the algorithms. Additionally, our implementation of Dijkstra algorithm [8] is

simple, that is, we use a naïve scheme of label setting algorithm running in time. In

O()K og)K

() ()O K O n=

2()O n

19

this case, this fact has a significant effect in the empirical performance of the algorithms.

However, note that our interest in the current experiment is to observe if the “optimistic”

behavior of these algorithms occurs in practice. These codes were written in C and compiled

with the Linux gcc compiler using the O4 optimization option. We used the SPRAND,

SPGRID and SPACYC generators attributed to Cherkassky et al. [5]. C codes of these

generators are contained in the SPLIB-1.4 library available in the personal web page of A. V.

Goldberg (www.avglab.com/andrew/).

The enumerated codes were tested on an Intel® Pentium® M with 2 GHz processor 760

with 1Gb RAM running Red Hat Linux. As in the reference studies, we report the user CPU

times in seconds, averaged over several instances generated with the same parameters taking

into account the following ten seeds: 12345678, 36581249, 23456183, 46545174, 35826749,

43657679, 378484689, 23434767, 56563897, and 78656756. In each cell of a table appear:

the average running time in seconds (in bold) and the average number of shortest path

computations per number of computed paths. In particular the number of shortest path

computations for the KPPSSP2 equals the number of times that line 12 (re-optimization) of

procedure MAP is executed plus line 21 of the KPPSSP algorithm (one additional re-

optimization for each new candidate path calculated). The number of shortest path

computations for the KPPSSP1 equals the number for KPPSSP2 plus the number of times the

line 5 of procedure BT is executed.

20

http://www.avglab.com/andrew/

Table 1: Rand family data.
 KPPSSP1 KPPSSP2

n m K 200 400 600 800 1000 200 400 600 800 1000
2000 20000 15,0 33,5 53,4 74,0 95,5 5,0 9,9 14,9 19,8 24,8
 3,1 3,5 3,7 3,9 4,0 1,1 1,1 1,1 1,1 1,1
2000 40000 16,9 37,4 59,4 82,3 106,0 5,4 10,8 16,2 21,6 27,0
 3,2 3,5 3,7 3,9 4,0 1,1 1,1 1,1 1,1 1,1
2000 60000 17,5 39,4 63,0 87,3 112,8 5,9 11,9 17,8 23,8 29,7
 3,0 3,4 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
2000 80000 19,7 43,8 69,2 95,9 123,3 6,5 13,0 19,5 26,0 32,5
 3,1 3,4 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
2000 100000 22,5 49,9 79,3 109,9 141,7 7,0 14,0 21,0 28,0 35,0
 3,2 3,5 3,8 3,9 4,0 1,0 1,1 1,1 1,1 1,1
4000 40000 57,7 128,4 205,6 287,1 371,3 20,1 40,2 60,4 80,5 100,7
 2,9 3,2 3,4 3,6 3,7 1,0 1,1 1,1 1,1 1,1
4000 80000 64,6 144,6 230,1 320,1 410,4 21,3 42,6 63,9 85,1 106,3
 3,0 3,4 3,6 3,8 3,9 1,1 1,1 1,1 1,1 1,1
4000 120000 71,0 158,8 253,0 349,4 448,0 22,6 45,1 67,8 90,5 113,0
 3,2 3,6 3,8 3,9 4,0 1,1 1,1 1,1 1,1 1,1
4000 160000 72,4 160,7 257,1 356,2 457,8 23,3 46,7 70,0 93,6 116,9
 3,1 3,5 3,7 3,8 3,9 1,0 1,1 1,1 1,1 1,1
4000 200000 75,7 167,4 267,2 369,1 474,8 24,3 48,6 72,9 97,2 121,5
 3,1 3,4 3,6 3,8 3,9 1,0 1,0 1,0 1,0 1,0
6000 60000 129,1 287,1 456,6 636,0 818,4 44,8 89,5 134,3 179,2 224,0
 2,9 3,2 3,4 3,5 3,6 1,0 1,0 1,0 1,0 1,0
6000 120000 141,3 315,1 501,6 693,5 893,6 46,9 93,8 140,5 187,4 234,1
 3,0 3,4 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
6000 180000 142,0 318,0 504,6 699,3 901,5 48,2 96,4 144,7 192,7 244,2
 3,0 3,3 3,5 3,7 3,8 1,1 1,1 1,1 1,1 1,1
6000 240000 147,9 333,2 529,6 733,4 944,8 49,8 99,7 149,2 199,1 248,7
 3,0 3,3 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
6000 300000 152,2 338,5 539,7 749,3 963,7 51,7 103,3 155,0 207,0 258,9
 3,0 3,3 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
8000 80000 241,4 534,1 848,8 1178,1 1517,0 78,9 158,2 237,2 316,4 395,1
 3,0 3,4 3,5 3,7 3,8 1,0 1,0 1,0 1,0 1,0
8000 160000 243,9 546,4 868,6 1207,3 1555,1 82,6 165,8 248,6 331,5 414,0
 3,0 3,3 3,5 3,7 3,8 1,1 1,1 1,1 1,1 1,1
8000 240000 257,1 569,5 907,7 1256,0 1615,7 84,1 168,4 252,4 336,7 420,7
 3,0 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
8000 320000 259,7 577,5 921,2 1282,1 1649,0 86,3 172,6 258,9 345,5 431,8
 3,1 3,4 3,6 3,8 3,9 1,1 1,1 1,1 1,1 1,1
8000 400000 244,8 551,0 877,3 1224,0 1586,4 88,4 176,8 264,8 353,3 441,7
 2,8 3,1 3,3 3,5 3,6 1,1 1,1 1,1 1,1 1,1
10000 100000 369,2 834,8 1332,0 1842,6 2370,4 122,5 245,5 367,7 490,3 612,9
 3,0 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
10000 200000 395,0 872,3 1389,6 1921,7 2476,0 125,9 251,9 377,7 504,0 629,7
 3,1 3,4 3,7 3,8 3,9 1,0 1,0 1,0 1,0 1,0
10000 300000 397,8 875,6 1391,9 1925,1 2479,0 128,5 257,1 385,5 514,1 642,5
 3,1 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
10000 400000 393,8 879,8 1391,8 1931,4 2493,2 131,5 263,0 403,6 529,2 656,8
 3,0 3,3 3,5 3,7 3,8 1,0 1,0 1,0 1,0 1,0
10000 500000 406,4 907,7 1448,4 2014,0 2601,4 133,9 267,8 401,8 536,0 670,1
 3,0 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0

21

We first used the SPRAND generator attributed to Cherkassky et al. [5]. We present results

for random graphs with uniform arc lengths at random from interval []0,10000 with

{ }2000, 4000,...,10000n∈ , { }10 , 20 ,...,50m n n∈ n and { }200, 400,...,1000K ∈ . The origin

and destination nodes were 1 and n, respectively. In total 10x5x5x10=2500 instances were

solved by each algorithm. Note that the size of the networks in this experiment is reasonably

high, for example, the greater size corresponds to a network with 10000 nodes and 500000

arcs. The results are shown in Table 1. We note that for all instances, the number of

enumerated paths equals K, that is, the number of origin-destination paths in each instance is

greater or equal to K. We observe that the CPU time employed by KPPSSP1 algorithm is at

most four times the CPU time of the KPPSSP2 algorithm. This fact is directly in relation with

the average of the number of shortest path computations per number of computed paths (#sp).

Note that this ratio is at most four for the KPPSSP1 algorithm and at most 1.1 for the

KPPSSP2 algorithm. In other words, the number of shortest path computations carried out for

KPPSSP2 algorithm is practically one per computed path. Clearly, the practical behavior of

this algorithm can be qualified as “ideal” for this kind of instances. Moreover, at most four

shortest path computations per computed path are made in the KPPSSP1 algorithm. This

number is also low. An explanation is that the average depth of the each computed path in the

tree of trees is close to three. Therefore, the number of times calling to procedure BT is close

to 3K. Moreover, the value of #sp in the KPPSSP2 algorithm remains constant for all values

of K, while the value of #sp in the KPPSSP1 algorithm slowly increases as K increases. In

other words, the CPU time and the number of shortest path computations in both algorithms

are linear in K. Clearly, the practical behaviors of both algorithms coincide with the

“optimistic” case for the SPRAND generator problems.

We also used the SPGRID generator attributed to Cherkassky et al. [5]. We present results

for Grid-SSquare (square grids) family data (Table 2). We present results for random graphs

with uniform arc lengths at random from interval []0,10000 with { }16,32,64,128X ∈ and Y

= X. The origin and destination nodes were 1 and n-1, respectively. In total 4x5x10=200

instances were solved using each algorithm. Also, we note that for all instances, the number

of enumerated paths equals K, that is, the number of origin-destination paths in each instance

is greater or equal to K. We observe that the CPU time employed by KPPSSP1 algorithm is at

most 3.5 times the CPU time of the KPPSSP2 algorithm. In this case, the value of #sp in the

KPPSSP1 algorithm is at most 1.9 times the the value of #sp in the KPPSSP2 algorithm.

22

Again, the behavior of both algorithms is linear in relation with K. Moreover, the practical

behaviors of both algorithms is close to the “optimistic” case for the SPGRID generator

problems. For example, at most 7 (≥ 6.5) shortest path computations per computed path are

made in the KPPSSP1 algorithm. This number is 4 (≥ 3.7) for the KPPSSP2 algorithm. We

observe that the average depth of the tree of trees for the SPGRID instances is at most 3 since

the difference of the ratio #sp for the two algorithms is near to 3.

From tables 1 and 2, we also conclude that the instances provided by SPRAND were easily

solved for all the codes that the instances obtained by SPGRID as already was observed in

others shortest path algorithms experiments.

Table 2: Grid-SSquare family data.

 KPPSSP1 KPPSSP2
X=Y / K 200 400 600 800 1000 200 400 600 800 1000

16 0,2 0,5 0,8 1,0 1,3 0,1 0,2 0,2 0,3 0,4
 5,7 6,1 6,3 6,4 6,5 3,8 3,8 3,7 3,7 3,7

32 2,3 5,2 8,3 11,5 14,7 0,9 1,8 2,7 3,6 4,5
 5,1 5,5 5,7 5,8 5,9 3,2 3,3 3,3 3,3 3,2

64 33,2 74,4 118,2 164,3 212,3 12,2 24,5 36,9 49,5 62,0
 4,7 5,1 5,3 5,4 5,6 2,9 2,9 2,9 3,0 3,0

128 479,2 1055,8 1676,8 2343,6 3003,2 184,2 368,0 552,6 738,2 924,0
 4,9 5,3 5,6 5,7 5,9 3,2 3,4 3,4 3,5 3,5

We also used the SPACYC generator attributed to Cherkassky et al. [5]. We do not report

a table of the CPU time and the ratio #sp for short. It is clear that the KPPSSP2 algorithm

only makes 1 shortest path computation per enumerated path in acyclic networks.

6. Conclusions.

From this paper, we conclude that the K point-to-point shortest simple path problem can be

solved using only space instead of O()K m+ 2O()Kn space in the same O()

time . Therefore, the reduction of the requirements reached by our algorithm is notability

reduced. Moreover, if in our algorithm, we store not only the tree of trees but also the K

shortest path trees then, we obtain a version of the algorithm using space and not

using the procedure BT. The worst-case time complexity of this algorithm is still

O(), but in the “optimistic” case commented on section 3, the complexity of

the algorithm could be O() time since procedure MAP takes O(m) time and the

algorithm needs to compute one shortest path tree in each iteration. In this paper, we exploit

the structural relations between two path trees, that is, the kth best solution can be obtained

from at least one of the k−1 best previous solutions using the respective trees. Thus, we

max(, ,)Knf n m C

O()Kn

max(, ,)Knf n m C

max(, ,)Kf n m C

23

design an algorithm that in the “optimistic” case takes advantage of the exchange operation

for a tree of the PPSSP problem. On the other hand, the results addressed in this paper can be

useful to develop new algorithms for the multiobjective shortest path problem from one

source node to one sink node in a network (see Azvedo et al. [2] , Climaco and Martins [6]

and Raith and Ehrgott [19]).

Acknowledgments

This work has been partially supported by Spanish Government Research Project

MTM2006-10170.

References
1. Ahuja, R., T. Magnanti, J. B. Orlin. 1993. Network Flows. Prentice-Hall, inc.

2. Azvedo, J., E.Q.V. Martins. 1991. An algorithm for the multiobjective shortest path problem on Acyclic

networks. Investigacao Operacional 11 52-69.

3. Brander, A., M. Sinclair (1995). A comparative study of K-shortest path algorithms. In Proc. Of 11th UK

Performance Engineering Workshop 370-379.

4. Carlyle, R., R.K. Wood. 2005. Near-shortest and K-shortest simple paths. Networks 46 (2) 98-109.

5. Cherkassky, B. V., A. V. Goldberg, T. Radzik. 1996. Shortest paths algorithms: Theory and experimental

evaluation, Math. Program. 73 129 - 174.

6. Climaco, J.C.N., E.Q.V. Martins. 1982. A bicriterion shortest path algorithm. European Journal of

Operational Research 11 399-404.

7. Eppstein, D. 1999. Finding the K shortest paths. Siam Journal on Computing 28 653-674.

8. Dijkstra E. W. 1959. A note on two problems in connection with graphs. Numer. Math. 1 269-271.

9. Gabow, H. N. 1977. Two Algorithms for Generating Weighted Spanning Trees in Order. Siam Journal on

Computing 6 (1) 139-150.

10. Hadjiconstantinou, E., N. Chirstofides. (1999). An efficient implementation of an algorithm for finding K

shortest simple paths. Networks 34 88-101.

11. Hershberger, J., M. Maxel, S. Suri. (2007). Finding the k Shortest Simple Paths: a new algorithm and its

implementation. ACM transactions on Algorithms 3 4.

12. Hoffman, W., R. Pavley. 1959. A method for the solution of the Nth best path problem. Journal of the ACM

6 506-514.

13. Katoh, N., T. Ibaraki, H. Mine. (1982). An efficient Algorithm for K Shortest Simple Paths. Networks 12

411-427.

14. Lawler, E. L. (1972). A procedure for computing the K best solutions to discrete optimization problems and

its application to the shortest path problem. Magnagement Science 18 401-405.

15. Martins, E.Q.V., M. M. B. Pascoal. 2003. A new implementation of Yen’s ranking loopless paths

algorithm. 4OR – Quarterly Journal of the Belgian, French and Italian Operations Research Socities, 1 (2)

121-134.

24

16. Martins, E.Q.V., M. M. B. Pascoal, J. Santos. 1997. A new algorithm for ranking loopless paths algorithm.

Technical report, Universidade de Coimbra, Portugal.

17. Perko, A. (1986). Implementation of algorithms for K shortest loopless paths. Networks 16 149-160.

18. Pollack, M. (1961). The kth best route through a network. Operations Research 9 578-580.

19. Raith A., M. Ehrgott. 2009. A comparison of solution strategies for biobjective shortest path problems.

Computers & Operations Research 36 (4) 1299-1331.

20. Sedeño-Noda, A., C. González-Martín. 2006. Shortest Path Simplex Algorithm with a Multiple Pivot Rule.

Technical report nº 2, Departamento de Estadística, Investigación Operativa y Computación.

21. Sedeño-Noda, A. 2008. An Efficient K Point-to-Point Shortest Simple Paths Algorithm in Acyclyc

Networks. Technical report nº 5, Departamento de Estadística, Investigación Operativa y Computación.

22. Yen, J. Y. 1971. Finding the K shortest loopless paths in a network. Management Science 17 712-716.

23. Yen, J. Y., 1972. Another algorithm for finding the K shortest loopless network paths. In Proc. of 41st Mtg.

Operations Research Society of America 20.

25

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC5-4RVG3S4-1&_user=1595683&_coverDate=04%2F30%2F2009&_alid=817521078&_rdoc=1&_fmt=high&_orig=search&_cdi=5945&_sort=d&_docanchor=&view=c&_ct=4&_acct=C000053937&_version=1&_urlVersion=0&_userid=1595683&md5=92ba1f8111ad3a1477118f003dcb4277
http://webpages.ull.es/users/estinv/Investigacion/pdfs_dt/DT_DEIOC_5_2008.pdf

	ANTONIO SEDEÑO-NODA (asedeno@ull.es)

