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Abstract. We address the problem for finding the K best point-to-point simple paths connecting a given pair of 

nodes in a directed network with arbitrary lengths. The main result in this paper is the proof that a tree 

representing the kth point-to-point shortest simple path can be obtained by using one of the previous (k-1) trees 

representing each one of the previous (k-1) best point-to-point shortest simple paths. The proof requires that, in 

each iteration, at most n single-source shortest path computations (re-optimizations) in a network with non-

negative length arcs are needed. In the “optimistic” case, this strategy only needs O(m) time to compute the best 

“neighbor” associated with a path tree, that is, the second shortest simple path for a given shortest simple path. 

The algorithm runs in O(K ) time and uses O(K+m) space to determine the K point-to-point 

shortest simple paths in a directed network with n nodes, m arcs and maximum absolute length . 

O( ) is the best time needed to solve the shortest simple paths connecting a source node with any 

other non-source node in a network with non-negative length arcs. We provide a clear improve on the space 

needed in Yen’s algorithm by a multiplicative factor of O( ) for each best solution. Moreover, a version of our 

algorithm using only O(Kn + m) space runs in an “optimistic” case in O( ) time. This affirmation 

is confirmed by an experimental study where O(K) shorted paths are used  to determine the K point-to-point 

shortest simple paths in both versions of our algorithm. 
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1. Introduction 

 
The point-to-point simple shortest path (PPSSP) problem in a directed network of n nodes 

and m arcs with arbitrary lengths on the arcs finds a shortest length path from a source node to 

a sink node or detects a cycle of negative length. Many important real cases of this problem 

appears and the numerous algorithms to solve it are addressed in Ahuja et al. [1] among 

others. 

The K point-to-point shortest simple paths (KPPSSP) problem determines the K best 

solutions of the PPSSP problem. The problem to determine the K shortest paths in a network 

has a wide range of applications (see Eppstein [7] for example). An extended bibliography of 
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several K best shortest path problems collected by Eppstein is available at 

<http://www.ics.edu/~eppstein/bibs/kpath.bib>. We chronologically cite the papers of the 

literature considering only the K shortest simple (loopless) paths problem: Hoffman and 

Pavley [12], Pollack [18], Yen [22] and [23], Lawler [14], Katoh et al. [13], Perko [17], 

Brander and Sinclair [3], Martins et al. [16], Hadjiconstantinou and Christofides [10], Martins 

and Pascoal [15], Carlyle and Wood [4] and Hersberger et al. [11]. The best bound to solve 

this problem in directed networks is reached in the early paper of Yen [22]. Yen’s [22] 

deviation algorithm runs in  where (≥ ) is the best 

bound to solve the PPSSP problem in a directed network and uses  space. In 

addition, a number of papers have been proposed that refer to several practical improvements 

to Yen’s algorithm, however, none has succeeded in improving the worst-case asymptotic 

time and space complexity of the problem (see [3, 11, 15, 16, 17]). The algorithm given in 

Carlyle and Wood [4] needs only O(  space requirements (they ignore the space required to 

write out the enumerated paths), but its running times is . 

However, when the  KPPSSP problem appears as sub-problem of a more complicated 

problem can be necessary to store explicitly the best point-to-point simple paths or 

alternatively to mantain the way to easy re-compute these paths (see Eppstein [7]). For 

example, read/write file operations often require a large amount of time while keeping an 

implicit representation of the K best algorithms in RAM can be most useful. On the other 

hand, the Carlyle and Wood [4] algorithm is only valid for networks with non-negative 

integer lengths (this algorithm uses a binary search on an integer value that allows it to 

determine the K near-shortest simple point-to-point paths). Moreover, additional practical 

improvements can only be used in networks with non-negative length (modification A) and 

when paths containing cycles are allowed (modification D). We also consider the Hersberger 

et al. [11] algorithm based on a replacement paths algorithm. Hersberger et al. [11] claim that 

their algorithm runs in an “optimistic” case in O( ) time when the replacement 

paths algorithm does not fail (only two shortest path computations are needed in each right 

execution replacement path algorithm). Even so, in the “optimistic” case at least seven 

shortest paths computations are needed for each new discovered path. 

maxO(  ( , , ))Kn f n m C maxO( ( , , ))f n m C O( )m

2O( )Kn m+

)m

max maxO(  ( , , )(log log ))Kn f n m C n C+

max( , , )Kf n m C

For undirected networks, Katoh et al. [13] introduce an  time and 

space algorithm. This algorithm was efficiently implemented in Hadjiconstantinou 

and Christofides [10]. 

maxO(  ( , , ))K f n m C

O( )Kn m+
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The K point-to-point shortest paths problem in which paths are not required to be simple 

are easier. The best algorithm for this problem is due to Eppstein [7]. The algorithm of 

Eppstein [7] computes an implicit representation of the K paths in  time 

and space. Each path can be output in order in O(

O( log )m n n K+ +

O( )K m+ log )n K+  additional time, 

therefore, the K shortest paths can be enumerated in order by Eppstein algorithm [7]  in 

. Clearly, this algorithm can be used to determine the K point-to-

point shortest simple paths in a network without directed cycle since any path in an acyclic 

network is a simple path. The algorithm given by Sedeño-Noda [21] runs in 

O( log ( log ))m n n K n K+ + +

O( log ( log ))Km n n K n
n

+ + +  time using O( )K m+  space improving the bounds in [7] when 

an explicit enumeration in order of the best solutions is required. 

In this paper, we prove that a tree representing the kth point-to-point shortest simple path 

can be obtained using one of the previous (k-1) trees representing each one of the previous (k-

1) best point-to-point shortest simple paths. This result is achieved by showing that in each 

iteration, at most n single-source shortest path computations (re-optimizations) in a network 

with non-negative length arcs are needed. In the “optimistic” case, the proposed scheme only 

needs time to compute the best “neighbor” associated with a tree. That is, we introduce 

an ad-hoc procedure to compute the second point-to-point simple path for a given point-to-

point shortest simple path. This procedure takes advantage of the structural relations between 

the shortest path tree and the second best path tree. Hence, our algorithm is not a deviation 

algorithm and it does not use a replacement paths algorithm as a subroutine. In any case, we 

propose an  time and 

O( )m

maxO(  ( , , ))Kn f n m C O( )K m+  space algorithm to determine the K 

point-to-point shortest simple paths in a directed network with n nodes, m arbitrary length 

arcs and maximum absolute length . Note that  is the best time needed 

to solve the shortest simple paths connecting a source node with any other non-source node in 

a network with non-negative length arcs. In each iteration of our method, the kth best point-

to-point shortest simple path is calculated and then, the way to determine the second best 

point-to-point simple path associated with the kth best solution is computed and stored. Note 

that this approach improves the space needed in Yen’s algorithm by a multiplicative factor of 

 for each best solution. Moreover, a version of our algorithm using only 

maxC maxO( ( , , ))f n m C

2O( )n O( )Kn m+  

space can run in the “optimistic” case in time. That is, when the current k 

best solutions are stored, the determination of the (k+1)th best solution using our ad-hoc 

maxO(  ( , , ))K f n m C
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procedure requires in the “optimistic” case O( time plus only one shortest path 

computation. This affirmation is confirmed with an experimental study where shorted 

paths computations are used to determine the K point-to-point shortest simple paths for both 

versions of the algorithm. However, our algorithm does not improve the bounds for the 

undirected network. That is, when a directed version of the undirected network is considered, 

our algorithm works as in the directed case. In the case that the network is acyclic, our 

algorithm runs in using only 

)m

O( )K

maxO(  ( , , ))K f n m C O( )K m+  space. Clearly, Eppstein [7] and 

Sedeño-Noda[21] are better in this case, but when the acyclic property is unknown a priori, 

our algorithm takes advantage of this situation while other “general” algorithms contemplated 

in the literature do not. 

After this introduction, in section 2, the linear programming formulation of the PPSSP 

problem and the K point-to-point shortest simple path problem are given. In section 3, we 

introduce the main theoretical results, which the algorithm is based on. Section 4 contains a 

detailed pseudo code and an explanation of the proposed algorithm. Additionally, the worst-

case time and space theoretical complexity of the algorithm is proven. Section 5 includes a 

report on the computer results of our method from a subset of the experiment carried out 

using the networks generator provided in Cherkassky et al. [5]. Finally, in section 6, we offer 

our conclusions. 

 
2. The point-to-point shortest simple path problem and the K point-to-point shortest simple 
paths problem. 
 

Given a directed network G = (V, A), let { }nV ,...,1=  be the set of n nodes and A be the set 

of m arcs. For each arc , let Aji ∈),( ∈ijc  be its length and { }max ( , )
max iji j A

C
∈

= c . The network 

has two distinguished nodes: the source node s and the sink node t. We denote by 

{ }| ( , )i j V j i A−Γ = ∈ ∈  for all node i V∈ . We assume without loss of generality that the 

directed network G does not contain any arc emanating from sink node t. Note that in any 

case, a simple path from s to t does not use arcs emanating from t. Similarly reasoning allows 

us to suppose that the directed network G does not contain any arc arriving at source node s. 

Let  be two distinct nodes of G = (V, A), we define a simple path ,i j V∈ ijp  as a sequence 

{ }1 1 2 2 1 1, ( , ), , , , ( , ),l l l li i i i i i i i− −  of non-repeated nodes and arcs satisfying ,  and for 

all , . A directed simple cycle is a simple path such that the only 

1i i= li = j

1 1w l≤ ≤ − 1( , )w wi i A+ ∈
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repeated nodes are  and ( ). The directed network G is acyclic if it does not contain any 

directed (simple) cycle. The length of a directed path p is the sum of the arc lengths in the 

path, that is, . The point-to-point shortest simple path (PPSSP) problem 

consists in finding a shortest simple path from node s to node t or in determining a negative 

cycle, that is, a directed cycle of negative length. 

1i li iip

( , )

( ) ij
i j p

c p c
∈

= ∑

If a flow  is associated with each arc  then the following linear programming 

problem represents the PPSSP problem (see Ahuja et al. [1]): 

ijx ),( ji

 

{ }
{ }

{ }

( , )

:( , ) :( , )

Minimize   ( )                                         (1)

subjet to 
1     if 

         0    if ,        (2)
1  if 

         0,           

ij ij
i j A

ij ji
j i j A j j i A

ij

c x c x

i s
x x i V s t

i t
x

∈

∈ ∈

=

=⎧
⎪− = ∀ ∈ −⎨
⎪− =⎩

≥

∑

∑ ∑

             ( , )                           (3)i j A∀ ∈

 

 

The above problem is a special case of the minimum cost network flow (MCNF) problem. 

The network simplex algorithm can be used to solve the above problem by taking advantage 

of the fact that any basis of the MCNF problem is a spanning tree T  of G. Let X be the 

convex polyhedron defined by constraints (2)-(3) (decision space). The following two 

literature results hold (Ahuja et al. [1]): (i) Any feasible solution of the PPSSP problem is a 

vertex of X and vice-versa and (ii) Every vertex of X is associated with a directed spanning 

tree rooted at s. 

A⊆

A directed out-spanning tree is a spanning tree rooted at node s such that the unique path 

in the tree from node root s to every other node is a directed path. Note that in this kind of 

tree, each node { }\i V s∈  has only one node predecessor in the tree ( ), that is, its in-

degree is one. In the rest of paper, we refer to a directed out-spanning tree as tree. 

( )ipred T

Distance labels of the nodes (negative dual variables) corresponding to a tree T are 

obtained by setting  and solving ( ) 0sd T = ( ) ( ) 0ij i jc d T d T+ − = , ( , )i j T∀ ∈ . Thus, given a 

tree T, we define the reduced cost ( ) ( ) ( )ij ij i jc T c d T d T= + − , ( , )i j A∀ ∈ . 
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Let  be the objective function value of the tree T. Note that 

. Therefore, minimizing  is equal to finding the shortest simple path 

from node s to node t. Additionally, since each node 

( , )
( ) ij ij

i j T
C T c x

∈

= ∑

( ) ( ) ( )tc x d T C T= = ( )c x

{ }\j V s∈  has only one node 

predecessor, we define ( )( )
jj pred T jx T x= . Note that if ( , )i j T∈  and ( )jt D T∈ , then 1ijx =  

and , otherwise, if and ( ) 1jx T = ( , )i j T∈ ( )jt D T∉  then 0ijx =  and . We also 

define 

( ) 0jx T =

( )iD T  to be the set of descendants of node i in the tree T, that is, the set of nodes in the 

sub-tree rooted at i, including node i. 

In a T-exchange, an arc with reduced cost ( , ) \i j A T∈ ( )ijc T  and ( )ji D T∉ is added to T 

and ( ( ), )jpred T j  is deleted from T yielding a new tree T ′ . Once a T-exchange is performed, 

the distance labels in T  are updated in the following way: ′ ( ) ( ) ( )k k ijd T d T c T′ = + , 

. Furthermore, the objective function value is ( )jk D T∀ ∈ ( ) ( ) ( ) ( )t t ij jd T d T c T x T′ = +  since 

( ) ( )j jx T x T ′= .  

For an optimal tree , we obtain the following optimality conditions: *T
*( ) 0,  ( , )ijc T i j A≥ ∀ ∈ . Hereinafter, we consider that the length of any arc  is Aji ∈),(

*( ) 0ijc T ≥  instead of , since determining the shortest path tree with length arcs c is 

equivalent to determining the shortest path tree with reduced cost length arcs 

ijc

*( )c T  in G 

(Ahuja et al. [1]). Therefore, once an optimal tree  is obtained, we can use the Dijkstra [8] 

algorithm to determine possible alternative paths in G from node s to node t considering non-

negative lengths. Therefore, without loss of generality, we consider 

*T

*( )ij ijc c T=  for all 

 in the rest of the paper. Aji ∈),(

The K point-to-point shortest simple paths problem consists in determining the K best 

different solutions of the problem (1)-(3). In other words, if we denote by  the path tree 

from node s to node t in the tree T then, the problem require identifying the K best trees  

with different 

( )stp T

kT

( )k
stp T  for { }1,...,k ∈ K  such that 1 2( ) ( ) ... ( )K

t t td T d T d T≤ ≤ ≤  and for any 

other tree  with pT ( ) ( )p
st st

kp T p T≠  for all { }1,...,k K∈  is . ( ) ( )p K
t td T d T≥
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3. Main Theoretical Results. 
 

In this section, we introduce and prove the basic results to the efficient resolution of the K 

point-to-point shortest simple path problem. We begin by introducing the following 

definition: 

 

Definition 1. Two trees T and  are adjacent if and only if both have  arcs in common, 

that is, both trees differ in only one arc. 

T ′ 2n−

 

Therefore, the tree T  can be built from the tree T by a T-exchange where the entering arc 

is just the arc ( ,  and ( ,

′

) \i j T T′∈ ) \p q T T ′∈  is the leaving arc. In addition, if the path tree 

from node s to node t in T  must be different to the path tree from node s to node t in T, then 

the entering arc ( ,

′

) \i j T T′∈  must satisfy ( ) 1jx T = , that is, node j must belong to the path 

tree from node s to node t in T. Moreover, let T and T ′  be two trees that differ in the p n<  

arcs. Then the following property given in Sedeño-Noda and González-Martín [20] holds: 

 

Proposition 1. If T and T differ in p < n arcs, where E = { ,…, } are the arcs in 

 that are not in T, then: (1) E does not contain a directed cycle; (2) 

′ 1 1( , )i j ( , )p pi j

T ′ u vj j≠  holds for all 

{ }, 1,...,u v p∈  with u v≠ ; (3) These arcs define the smallest T-exchange sequence to obtain 

 from T, and the order in which these T-exchanges are performed is irrelevant.. T ′

 

Given any tree T, we call a multiple T-exchange to the operation where p < n arcs 

satisfying proposition 2 are entered simultaneously in T. The following results given in 

Sedeño-Noda [21] holds: 

 

Lemma 1. Given a tree T of an acyclic directed network G, let T ′  be the tree containing a 

different path tree from node s to node t that is obtained from T by making a multiple T-

exchange with the arcs ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  with non-negative reduced cost and with 

2 p n≤ < . Then ( )td T ′  is greater than or equal to the distance label of the node t of at least 

one of the p trees that can be obtained by a T-exchange with only one arc in the set 

( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j . 
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Given a tree T, we denote by  a subset of arcs of A\T and ( )A T

{ }( ( )) | ( , ) ( )i A T j V j i A T−Γ = ∈ ∈  (the set of predecessor nodes of node i in the directed graph 

(V, A(T)). Lemma 1 establishes that if network G is acyclic and T contains the best s-t path in 

the directed graph (V, ), the second best s-t path is obtained from T by a T-exchange 

with the entering arc 

( )A T T∪

{ }( ) ( , ) ( )
( , ) arg min ( ) : ( ) and ( ) 1A T ul l lu l A T
i j c T u D T x T

∈
= ∉ = . Then, for any 

node j with ( ) 1jx T = , we also define { }*

( ( ))
arg min ( ) : ( )

j
j ij

i A T
i c T i

−∈Γ
= jD T∉ . Therefore, 

{ }*( ) ( )
( , ) arg min ( )

jst
A T i jj p T

i j c T
∈

= . 

Given a tree T and a non-tree arc , we obtain the basis tree T  with ( )( , )A Ti j ′

( ) ( )st stp T P T′ ≠ . But, if network G is not acyclic, st ( )p ′T  co

). Clea

uld not be the second best s-t path 

in the directed graph (V, ( )A T ∪ rly, the second best s-t path in this graph contains 

the best sub-path from j to t for some j with ( )jx T

T

1= . Therefore, we must identify an 

alternative path from node s to each node j with ( )stj p T∈  not A T  with

=  and T , tha

using arcs ( , )i j ∈  

( )jx T  i D∉ t is, the nodes and arcs that can not be considered for a fixed 

node 

( )

1 ( )j

( )stj p T∈  are:  

(1)  with  (non-tree arcs) and ( , ) ( )u j A T∈ ( )ju D T∉ ( ( ),j )pred T j . 

(2) Any node belonging to ( )j tp T′  where j′ is the next node to node j in ( )jtp T . Or 

equivalently , any arc arriving at any node in ( )j tp T′  and any arc leaving from any node in 

( )jtp T  (including node j since we search for paths from node s to node j ). 

 

Thus, we must identify an alternative path from node s to node j with  using some 

descendant node(s) of node j not included in 

( ) 1jx T =

( )jtp T . For example in Figure 1, several paths 

arriving at node ( )stj p T∈  can be found using the arc  satisfying . They are 

,  and . For a 

fixed node 

( , )i j ( )ji D T∈

3 2s i i i→ → → → j j j3 4 2s i i i i→ → → → → 3 4 1 2s i i i i i→ → → → → →

( )stj p T∈ , we denote by ( )jB T  the set of arcs satisfying (1) and (2) and we set 

( ) ( ) ( )j jB T A T T B T= ∪ −  the arcs in  that can be used to find an alternative path 

from node s to node j.  

( )A T T∪
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Figure 1a. Initial tree arcs and non-tree arcs. Figure 1b. Tree arcs and non-tree arcs to determine 

the alternative path from node s to node j. 
Note that for a fixed node j with ( ) 1jx T = , for any node ( )jv D T∈  with  among 

all arcs ( ,  arriving at v with , we only must take into account those with the 

least reduced cost. For example in Figure 1a, any sub-path to node j crossing node  from 

any node u with  (

( ) 0vx T =

)u v ( )ju D T∉

2i

( )ju D T∉ { }3 4,u i i= ) always uses the arc with the least reduced cost, that 

is,  or . In Figure 1b) for node j, the arcs 3 2( , )i i 4 2( , )i i ( )jB T  appear with the exception of the 

arc , because we suppose that the arc  has the least reduced cost among the 

incoming arcs in node . Then, we obtain the next result: 

3 2( , )i i 4 2( , )i i

2i

 

Lemma 2. Given a tree T, with a set of arcs  with non-negative reduced cost, the best 

alternative path from node s to some node j with 

( )A T

( ) 1jx T =  using arcs in ( )jB T  contains only 

one non-tree arc ( ,  with  and )u v ( )ju D T∉ ( )jv D T∈ . 

 

Proof. Let  be the best alternative path  to the tree path ( )sjl T ( )sjl T ( )sjp T  from node s to 

node j using arcs ( )jB T . Note that  must contain at least one non-tree arc  with ( )sjl T ( , )y z

( )jy D T∉  and . Otherwise, an alternative path to the tree path ( )jz D T∈ ( )sjp T  from node s 

to node j does not exist. Let  be the sub-path from node v to node j with 

 containing only descendant nodes of node j. Clearly, the predecessor node of node 

( ) ( )vj sjl T l T⊂

( )jv D T∈
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v in the path  is a node u with ( )sjl T ( )ju D T∉ . Therefore, ( ) ( ) ( , ) ( )sj su vjl T l T u v l T= ∪ ∪  

where  is a non-tree arc with ( , )u v ( )ju D T∉  and ( )jv D T∈ . Since a path tree from s to u 

exists with zero reduced costs and  is the best alternative path to the tree path ( )sjl T ( )sjp T , 

then the length of  must be equal to the length of ( )sjl T ( ) ( , ) ( )su vjp T u v l T∪ ∪ . Therefore, we 

have identified an alternative optimal path from node s to node j that uses only one arc  

satisfying , 

( , )u v

( ) 0vx T = ( )ju D T∉  and ( )jv D T∈ . � 

 

Note that lemma 2 holds for any node ( )ju D T∈ . Then, we define  to be the shortest 

path from node s to node j with 

* ( )sjl T

( ) 1jx T =  using arcs in ( )jB T . 

 

Lemma 3. Given a tree T, with a set of arcs  with non-negative reduced cost, the best 

alternative path from node s to node j with 

( )A T

( ) 1jx T =  not using the ( ( ),j )pred T j  arc and 

nodes in the ( )jtp T  with exception of j is the path with minimum length between paths 

{ , } using the arcs in . *( ) ( , )si jp T i j∪ * ( )sjl T ( )A T T∪

 

Proof. Note that by lemma 1,  is the best alternative path to the path tree *( ) ( , )si jp T i j∪

( )sjp T  that does not use descendant nodes of node j with exception of j and does not use the 

arc ( ( ), )jpred T j . On the other hand, by definition,  is the best alternative path using 

some nodes that are descendants of node 

* ( )sjl T

j  not in ( )jtp T  (with exception of j) and does not 

use the arc ( ( ), )jpred T j . Clearly, the best alternative path to the tree path ( )sjp T  that does 

not contain the arc ( ( ), )jpred T j  and nodes in ( )jtp T  with exception of j is the path with 

minimum length of these two alternatives. � 

 

Note that if an alternative path to the tree path ( )sjp T  better than the alternative paths 

commented on lemma 3 exists, this alternative path uses the arc ( ( ),j )pred T j  and/or contains 

some nodes in ( )jtp T  additionally to node j. But in this case, we have identified an 

alternative path from node s to some node j′  belonging to ( )stp T  not using ( ( ), )jpred T j′ ′  

arc neither nodes in ( )j tp T′  with exception of j′  with length equal to or less than the 
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alternative path to ( )sjp T . In this case, when we search for an alternative best path for the 

current path ( )stp T , we will obtain the same or best utility by determining the best alternative 

path from node s to j′  instead of to node j. 

Denote by  the alternative path with minimum length between paths 

{ , } for a node j with 

( )sjAp T

*( ) ( , )si jp T i j∪ * ( )sjl T ( ) 1jx T = . Let * ( )
sj

Ap T  be the alternative path with 

minimum length among ( )sjAp T  paths with ( )stj p T∈ . Then, we obtain the next result: 

 

Theorem 1. Given a tree T, with a set of arcs  with non-negative reduced cost. Let node ( )A T
*j  be the node determining the alternative minimum length path * ( )

sj
Ap T . Let  be 

the set of non-tree arcs in 

* ( )
j

NT T

* ( )
sj

Ap T  and let T ′  be the tree obtained from T making a T-

exchanges sequence with the arcs in . Then * ( )
j

NT T T ′  is the second best solution of the 

PPSSP problem in the network G=(V, ). ( )A T T∪

 

Proof. Theorem holds since  * *( ) ( )
sj j t

Ap T p T∪ is the minimum alternative length path to the  

tree path ( )stp T . Therefore, when all the T-exchanges with the arcs in  are made, the 

distance label of any node in the tree path from node 

* ( )
j

NT T

*j  to node t increases in a minimum 

amount. Therefore, the increase in the distance label of node t is minimal nd T ′  is the 

second best solution of the PPSSP problem in the network T ∪

 a

G=(V T ). � , ( )A

 

We are interested in generating the K best point-to-point shortest simple paths in order 

without repeating the calculation of the same best solution. For that, given a tree T, let  

be the set commented on in theorem 1. Let  and let T

*j
NT

*
*( , ) ( )

j
i j NT T∈ ′  be the tree obtained 

making a T-exchanges sequence with the arcs in . Then, we set * ( )
j

NT T

{ }*( ) ( ) ( , )A T A T i j= −  and { }*( ) \ ( , ) : ( )
j t

A T A T u l A l p T′ ′= − ∈ ∀ ∈ ′ . Note that  does 

not contain any incoming arc in any node of the tree path 

( )A T ′

* *( ) ( )
j t j t

p T p T′ = . Therefore, any 

tree obtained from T ′  subsequently contains the same sub-path from node i to node t. In 

addition, any tree obtained from T does not contain the sub-path from node i to node t in T ′  

11 



since now  does not contain  . From these comments, it is easy prove that each 

best solution is obtained one time.  

( )A T *( , )i j

Since, we have fixed the sub-path ( )itp T ′ , we can delete from  all arcs ( )A T T′ ∪ ′

{ }( , ) : ( ) itu l A u p T ′∈ ∀ ∈  with the exception of the arcs in ( )itp T ′  since any alternative path 

from node s to node t will not use these arcs. That is, we define  

{ } { }*( ) ( , ) : ( ) ( , ) : ( ) ( )it itj t
E T A u l A l p T u l A u p T p T′ ′= − ∈ ∀ ∈ − ∈ ∀ ∈ ∪′ ′ . 

Let  be the shortest path tree rooted in s for the directed graph (V, ). Note that ( )E TT ′′ ( )E T ′

( )itp T ′  is contained in  and the descendant nodes of node i in ( )E TT ′′ ( )E TT ′′  are just the nodes 

belonging to ( )itp T ′ . In other words, the sub-tree hanging from node i in  is the sub-path ( )E TT ′′

( )itp T ′ . Then, we interchange T  by ′ ( )E TT ′′  and ( )A T ′  by ( ) ( )( ) ( ) \E T E TA T E T T′ ′′ ′ ′=  in our 

arguments. Note that now, any non-tree arc in ( )A T ′  has non-negative reduced cost and 

theorem 1 can be applied. Thus, from the later lemmas, theorems and the binary partition 

scheme, we can conclude without proof, one of the main results in this paper: 

 

Theorem 2. A tree associated to the kth best point-to-point shortest simple path can be 

obtained from a tree associated to at least one of the previous (k-1)th best point-to-point 

shortest simple paths. 

 

4. An Efficient Algorithm for the K Point-to-Point Shortest Simple Paths Problem. 
 
This section details the algorithm using the previous results to solve efficiently the K 

point-to-point shortest simple paths problem. Additional notation is first introduced. 

Given a basis tree T, the proposed method uses the distance label , the depth label 

 and the predecessor label 

( )ud T

( )udepth T ( )upred T  for each u V∈ . We assume that in the 

adjacency node list { }| ( , )iT j V i j T+ = ∈ ∈  the values of  are stored. We initially set 

, 

ijc

( ) 0sd T = ( ) 0sdepth T =  and ( )spred T s= . These tree indices can then be computed in O(n) 

time by depth-first search for T starting in node s (see Ahuja et al [1] for example). In order to 

determine if an arc  with  satisfies ( , )l u ( )stu p T∈ ( )ul D T∈  or not, we define  to be 

the major depth of a node  such that 

( )llow T

( )stu p T∈ ( )ul D T∈ . Therefore, if  

with  then  and if 

( ) ( )l ulow T low T≥

( )stu p T∈ ( )ul D T∈ ( ) ( )l ulow T low T<  with ( )stu p T∈  then . ( )ul D T∉

12 



Note that labels  can be computed in O(n) time by depth-first search for T once the 

predecessor labels and depth labels are known.  

( )llow T

Additionally, we associate a subset of non-tree arcs  with each tree T. For each 

calculated tree , the arc  is calculated and it is stored together with the 

index p indicating the associated pth best tree in a heap using as key the length of the path 

( )A T
pT *

*( , ) ( )p
j

i j NT T∈

* *( ) (p
sj j t

)pAp T p T∪ , that is, the way to obtain the second best simple path in 

( , ( ) )p pG V A T T= ∪ . We denote this heap by H in the algorithm. Assuming that t is the size 

of a heap, the operation Insert requires an effort O(log t) and the operation of extracting the 

element of the min-key (Extract First) takes O(1) time. The Create Heap operation takes O(1) 

time. 

On the other hand, in order to simplify the examination of the set of arcs  for a given 

tree T, we maintain an additional Boolean label named  for each node i

( )A T

( )ieligible T V∈ . 

 is FALSE if and only if the arc ( )ieligible T ( ( ),i )pred T i  can not be chosen to leave the tree T 

(for example, node i belongs to a fixed sub-path). Otherwise,  is TRUE. Given a 

basis tree T and its corresponding set of non-tree arcs , we assume that in the adjacency 

node list 

( )ieligible T

( )A T

{ }( ( )) | ( , ) ( )+Γ = ∈ ∈i A T j V i j A T  the value of  and Boolean label  are 

stored.  is TRUE for arc )

ijc ( )ijeligible T

( )ijeligible T  ( , ) (i j A T∈  if and only if this arc can be chosen to 

enter into the tree T. Initially the ( )ije T  is TRUE for al  ( , )i j  ilabe eligibl l arc n G. l

Using the above notation, one way to easily implement the selection of * ( )
sj

Ap T  and, 

therefore, the arc , consists in applying the following procedure for a tree T 

with a fixed sub-path from node u to node t: 

*
*( , ) ( )

j
i j NT T∈
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Procedure (MAP) Minimum_Alternative_Path(u, var MinLength, T, , , , 

, var i, var 

( )AT ( )d T ( )pred T

( )low T *j ); 

(1) = ∞;MinLength    = ∞;MinDesc =( ) TRUEieligible T ∀ ∈i V ; 

(2) =( ) FALSEieligible T   where ′∀ ∈ ( )u ti p T ′u  is the next node to node u in ; ( )utp T

(3) While ( ) do ≠u s

(4) For all −∈ Γ ( ( ))ul AT  do 

(5) = ∞luc ; 

(6) If (( ) and (==( ) TRUElueligible T ( )leligible T TRUE== ) and ( )) ≠( )upred T l

(7) = + −( ) ( )lu lu l uc c d T d T ; 

(8) If (( <luc MinLength ) and ( )) <( ) ( )l ulow T low T

(9) = luMinLength c ; ; =i l =*j u ;  

(10) If (( <luc MinDesc ) and ( )) ≥( ) ( )l ulow T low T = luMinDesc c ;  

(11) If ( <MinDesc MinLength ) 

(12) Determine  using the eligible nodes and arcs; * ( )sul T

(13) If (length of  < MinLength)) * ( )sul T

(14) Minlength = length of ;  * ( )sul T

(15) Let i be the predecessor node of node u in ; * ( )sul T =*j u ; 

(16) =( ) FALSEueligible T ; 

(17) = ( )uu pred T ; 

(18) =MinDesc MinLength ; 
 

The above procedure can not be applied unless the tree T satisfies that the descendant 

nodes of node  are just the nodes in the tree path u′ ( )u tp T′ , where node u is the next node to 

node u in the tree path 

′

( )utp T . Therefore, the procedure MAP is called with parameters  

being the last node in the tree path from s to t that is fixed in T. The variable 

u

MinLength  

stores the length of the best alternative path from s to t with fixed sub-path from u to t. This 

procedure returns a pointer to the eligible arc  belonging to  if it exists, otherwise 

it returns NULL. Given a node  not fixed (eligible), lines (4)-(10) determine the 

eligible arc ( ,  satisfying with minimum reduced cost and these lines allow in 

*( , )i j ( )A T

( )stu p T∈

)l u ( )ul D T∉

MinDesc  to store the minimum reduced cost value of eligible arcs  such that . 

The procedure (line 12) determines  using eligible nodes and eligible arcs only when 

( , )l u ( )ul D T∈

* ( )sul T

MinDesc  is less than MinLength  (the minimum increase in the distance label of node t 
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currently known). If the length of  is less than * ( )sul T MinLength  then, the procedure updates 

 and *( , )i j MinLength . Next, the procedure backtracks on u using the predecessor labels and 

updates MinDesc , and  for the current node u. ( ) FALSEueligible T =

Note that, if  then, the distance labels obtained solving  can be used in 

the determination of , that is, when 

( )uu pred T′ = * ( )sul T

* ( )sul T′ ( ) FALSEueligible T = , we re-optimize the shortest 

path from s to . For example, let u′
uBT  be the shortest path tree obtained considering the arcs 

in ( )uB T . Now, the distance label of any node belonging to the sub- tree ( )
u uBT B T′∩  is still 

optimal. Let p be a node not connected in ( )
u uBT B T′∩ , then using lemma 2, its initial label 

distance  becomes pd ′ { }min ( ) ( ) :  in the sub-tree ( )
u u up qp p uB B Bd c T d T q T B ′′ = + ∩ T . Moreover 

the execution of the label setting shortest path algorithm determining  can be stopped 

when node u becomes permanently labeled or the distance label of the new permanently 

labeled node becomes greater than or equal to 

* ( )sul T

MinLength . 

Next, we report on the computational effort of the procedure MAP. Lines (1-2) require 

 time. Lines (4)-(10) for all u in the tree path  are done in . In the worse 

case, line (12) is executed 

O( )n ( )sup T O( )m

( )sup T  times, that is,  where  is 

the best time needed to solve the point-to-point shortest simple paths in a directed network 

with non-negative length arcs. The remaining lines require  time. Therefore, the 

procedure MAP employs   time and uses space. However, note that 

procedure MAP could execute line (12) less than 

maxO( ( , , ))nf n m C maxO( ( , , ))f n m C

O(1)

maxO( ( , , ))nf n m C O( )n

( )sup T  times. Moreover, it is possible that 

for a given pair T and , line (12) will not be executed. In this “optimistic” case the 

procedure MAP requires time. For example, when the network is acyclic an arc  

satisfying  does not exist and MAP employs time. 

( )A T

O( )m ( , )l u

( )ul D T∈ O( )m

We use additional data structures as in Gabow [9] to reduce the memory space needed by 

the algorithm. Thus, let us assume that the first k trees kT ′ , { }1,...,k ′∈ k , have been 

calculated. Then, we use the following structures to store these trees as a directed out tree: 

[ ]father k′  stores the index p associated with basis tree  and a pointer to the arc 

 in G that determines the way to obtain the tree 

pT

*
*( , ) ( )

j
i j NT T∈ kT ′ ( [ ]father k′ ={p, }). 

Each element of the list  contains the index and a pointer to the arc  

*( , )i j

[ ]sons k′ *
*( , ) ( )

j
i j NT T∈
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in G that allowed the tree  to be obtained from pT kT ′ . The list [ ]sons k′  is arranged in such a 

way that the indices increase from left to right ( [ ]′sons k ={{ 1p , },…,{*
1( , )i j rp , }} 

and ). 

*( , )ri j

1 ... rp p< <

Using this information, any tree  can be derived from the initial optimal basis tree  

and  by applying the next recursive procedure. 

kT *T
*( )A T

 

Procedure (BT) BuildingT (k, father , so , var , var , var T, var ); ns ( )d T ( )pred T ( )AT

(1) If (k ≠ 1) 

(2) BT ( , [ ].father k p father , so , , , T, ); ns ( )d T ( )pred T ( )AT

(3) * *( , ) [ ].( , )i j father k i j= * ( )
j

pred T i; = ;  

(4) { } { }= − ∈ ∀ ∈ − ∈ ∀ ∈ ∪*( ) ( ) ( , ) ( ) : ( ) ( , ) ( ) : ( ) ( )it itj t
E T AT u l AT l p T u l AT u p T p T ; 

(5) Let  be the shortest path tree rooted at s for the directed network 

; Let  and  be the distance and predecessor labels associated 

with T; 

= ( )E TT T

( , ( ))V E T ( )d T ( )pred T

 

The procedure BT is called with *T T= ,  and *( ) ( )d T d T= *( ) ( )pred T pred T= , where 

 is an optimal tree and the index *T k p=  of the tree to be constructed. The procedure BT 

backtracks on index k = p using father until k = 1. Therefore, note that path tree from k = 1 to 

k = p in the tree of trees at most have n-1 nodes since in each tree an additional node i is fixed 

in the sub-path from i to t. In an iteration k, at the beginning of the execution of line (3), the 

procedure BT has built the tree [ ].father k pT . Line (3) modifies the pred label of node *j  using 

the arc )  to identify the fixed sub-path from node i to no ( )k
it

*( ,i j de t ( p T ). Since the 

distance labels of some descendant nodes of node i (not included in ( )k
itp T ) can not be 

optimal for the current sub-problem, lines (4) and (5) built kT  as was indicated in section 3. 

Note that a re-optimization process can be attained from T in line (3) to obtain kT  in line (5) 

as was mentioned in section 3, for example using lemma 2. The running time of each iteration 

of procedure BT (lines (3)-(5 max, ))C . Therefore, the complexity of the 

proced max, , ))m C  since at most n-1 recursive calls are p

)) is f n m

ure BT is O( (nf n

O( ( ,

 erformed. 

The complete algorithm with the above notation and remarks is presented on next page. 

The algorithm starts with an optimal tree = *T T . The index of the number of best solutions k 

is set to 1. All necessary labels associated with the basis tree T are the computed. The arc 
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( , )i j  is determined by calling the procedure MAP(t, MinLength, T, A, , ( )d T

( )pred T , ). The heap H is created and the element {( , , 1, ( )low T )i j ( )tMinLength d T+ } is 

inserted in H wherever arc  exists. The algorithm then starts with a loop until the K best 

solutions are identified or no more feasible solutions are possible. Thus, in each iteration, the 

first element in the heap is extracted. This element identifies the way to obtain the (

( , )i j

1k + )th 

best solution. In the algorithm { }[ 1] , ( , )father k p i j+ =  lets us determine . Then, the 

algorithm adds {

1kT +

}1, ( , )k i j+  at the end of  to reconstruct in a future, the tree T for all 

descendant of  in the tree of trees. Now, in the algorithm  is reconstructed by the 

procedure BT and the tree indices of  are calculated.  Then, the algorithm identifies the tail 

(leaving) node u = i of the arc 

[ ]sons p

1kT + pT
pT

[ ].( , )father p i j  being the fixed node in the ( )p
stp T  with minor 

depth for p > 1. Otherwise, u = t since in  the fixed node is only t.  Next, all used arcs in 

the determination of trees that are sons of  are marked ineligibles. Then, the new  arc 

in 

*T
pT ( , )i j

( )pA T  is found by adequately calling the procedure MAP. The resulting arc (if it exists) 

and the index p are stored in the heap H using the key value ( )tMinLength d T+  where 

MinLength is the value calculated in the procedure MAP. The algorithm then increases the 

index k and updates . Note that in this case  is determined from  and  kT kT pT [ ].( , )father k i j  

as in BT procedure (Lines (19)-(21)). The necessary tree indices of  are calculated. Note 

that  has no sons and therefore any arc in A is eligible (line 17). Finally, for this new best 

tree, the arc  arc in  is determined and the element { ( , , k, 

kT
kT

( , )i j ( kA T ) )i j

( )k
tMinLength d T+ } is inserted in H. 
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K Point-to-Point Shortest Simple Paths (KPPSSP) Algorithm; 

(1) Let  be an optimal basis tree;  *T

(2) Set ; ; = 1k *T T=

(3) Compute labels , ,  for a tree T; ( )d T ( )pred T ( )low T

(4) Create Heap H; 

(5) MAP(t, MinLength, T, A, , , , i, j); ( )d T ( )pred T ( )low T

(6) If (( , ≠ NULL) Insert {( , , k, } in H; )i j )i j + ( )tMinLength d T

(7) While ((k < K) and (H ≠ ∅)) do 

(8) Extract first {( , , C, p} of H;  )i j

(9) { }+ =[ 1] ,( , )father k p i j ; Add { }+ 1,( , )k i j  at the end of ; [ ]sons p

(10) = *T T ; ; = *( ) ( )pred T pred T

(11) BT(p, father ,so ,  , , T, A); ns ( )d T ( )pred T

(12) Compute labels  for a tree T; ( )low T

(13) u = leaving node of arc  when p >1; otherwise u = t; [ ].( , )father p i j

(14) For all { } ∈,( , ) [ ]l i j sons p  do ; =( ) FALSEijeligible T

(15) MAP(u, MinLength, T, A, , , , i, j); ( )d T ( )pred T ( )low T

(16) If (( , ≠ NULL) Insert {( , , p, } in H; )i j )i j + ( )tMinLength d T

(17) For all { } ∈,( , ) [ ]l i j sons p  do ; =( ) TRUEijeligible T

(18) Set = + 1k k ; 

(19) { } { }= ∪ −[ ].( , ) ( ( ), )jT T father k i j pred T j ; =( )jpred T i ; 

(20) { } { }= − ∈ ∀ ∈ − ∈ ∀ ∈ ∪( ) ( , ) : ( ) ( , ) : ( ) ( )jt it itE T A u l A l p T u l A u p T p T ; 

(21) Let  be the shortest path tree rooted at s for the directed 

network ; Let  and  be the distance and 

predecessor labels associated with T; Compute labels  for a tree T; 

( )E TT T=

( , ( ))V E T ( )d T ( )pred T

( )low T

(22) u = leaving node of arc ; [ ].( , )father p i j

(23) MAP(u, MinLength, T, A, , , , i, j); ( )d T ( )pred T ( )low T

(24) If (( , ≠ NULL) Insert {( , , k, } in H; )i j )i j + ( )tMinLength d T

 

Theorem 3. The KPPSSP algorithm computes the K point-to-point shortest simple paths in 

 time and O( space in a directed graph G. maxO( ( , , ))Knf n m C )K m+

 

Proof. In the beginning of the algorithm, the determination of  requires 

 time (see Ahuja et al. [1] to find a detailed bounds for this function). The 

initialization and calculation of the labels of the tree T involves time. The calculation of 

1T T= *

maxO( ( , , ))f n m C

O( )n
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the arc ( ,  by the procedure MAP requires an effort  time and the 

operation of create and insert for first time in the heap takes O( time. Clearly, the algorithm 

makes at most K iterations. In each iteration of the algorithm, the procedure MAP is called 

twice and procedure BT is called once requiring time overall,  and two 

insert heap operations are made in O(log k +log (k+1)). The labels of a tree T are calculated 

twice in each iteration of the loop in  time. The complexity of lines (20)-(21)) is 

. Remainder operations in the loop are made in O(  time. Thus, the worst-

case time complexity of the algorithm is  

+ ). Since 

)i j maxO( ( , , ))nf n m C

1)

maxO( ( , , ))nf n m C

O( )n

maxO( ( , , ))f n m C 1)

maxO( ( , , ))f n m C

1

max
1
(log log( 1) ( , , ))

K

k
k k nf n m C

−

=

+ + +∑ 2mK <  and O( ) , then 

 time. On the other hand, the space required by the algorithm is 

, since the father, sons and heap structures require space; the tree T and its 

corresponding labels need  space and the storing  A uses  space. � 

max( , , )f n m C O( )m≥

maxO( ( , , ))Knf n m C

O( )K m+ O( )K

O( )n O( )m

Suppose now that  tree  (or the fixed sub-path kT ( )k
itp T ) is stored for each k best 

solution. In this case, the algorithm uses O( )Kn m+  memory space and does not need the 

procedure BT (lines (20-21) substitute line (11) when p > 1). In this case the running time of 

the algorithm is still , but in the “optimistic” case when procedure MAP 

takes  time, only one (two) additional shortest path computation (line 21) is (are) made. 

In this last case, we say that the algorithm runs optimistically in  time. In 

the next section, we introduce a computational experiment that shows that the number of 

shortest path computations made by the proposed algorithms are . 

maxO( ( , , ))Knf n m C

O( )m

maxO( ( , , ))Kf n m C

O( )K

5. Computational results. 

We have implemented two version of our algorithm: original KPPSSP algorithm denoted 

by KPPSSP1 and a version storing all best trees using O( )Kn m+  memory space denoted by 

KPPSSP2. In the current implementation of both algorithms, H is a vector and the operation 

to determine its minimum is sequential, that is, takes  instead of O(l . Since in our 

experiment , this fact does not have a significant effect in the empirical 

performance of the algorithms. Additionally, our implementation of Dijkstra algorithm [8] is 

simple, that is, we use a naïve scheme of label setting algorithm running in  time. In 

O( )K og )K

( ) ( )O K O n=

2( )O n
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this case, this fact has a significant effect in the empirical performance of the algorithms. 

However, note that our interest in the current experiment is to observe if the “optimistic” 

behavior of these algorithms occurs in practice. These codes were written in C and compiled 

with the Linux gcc compiler using the O4 optimization option. We used the SPRAND, 

SPGRID and SPACYC generators attributed to Cherkassky et al. [5]. C codes of these 

generators are contained in the SPLIB-1.4 library available in the personal web page of A. V. 

Goldberg (www.avglab.com/andrew/).  

The enumerated codes were tested on an Intel® Pentium® M with 2 GHz processor 760 

with 1Gb RAM running Red Hat Linux. As in the reference studies, we report the user CPU 

times in seconds, averaged over several instances generated with the same parameters taking 

into account the following ten seeds: 12345678, 36581249, 23456183, 46545174, 35826749, 

43657679, 378484689, 23434767, 56563897, and 78656756. In each cell of a table appear: 

the average running time in seconds (in bold) and the average number of shortest path 

computations per number of computed paths. In particular the number of shortest path 

computations for the KPPSSP2 equals the number of times that line 12 (re-optimization) of 

procedure MAP is executed plus line 21 of the KPPSSP algorithm (one additional re-

optimization for each new candidate path calculated). The number of shortest path 

computations for the KPPSSP1 equals the number for KPPSSP2 plus the number of times the 

line 5 of procedure BT is executed. 
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Table 1: Rand family data.  
 KPPSSP1 KPPSSP2 

n           m          K  200 400 600 800 1000 200 400 600 800 1000
2000 20000 15,0 33,5 53,4 74,0 95,5 5,0 9,9 14,9 19,8 24,8
  3,1 3,5 3,7 3,9 4,0 1,1 1,1 1,1 1,1 1,1
2000 40000 16,9 37,4 59,4 82,3 106,0 5,4 10,8 16,2 21,6 27,0
  3,2 3,5 3,7 3,9 4,0 1,1 1,1 1,1 1,1 1,1
2000 60000 17,5 39,4 63,0 87,3 112,8 5,9 11,9 17,8 23,8 29,7
  3,0 3,4 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
2000 80000 19,7 43,8 69,2 95,9 123,3 6,5 13,0 19,5 26,0 32,5
  3,1 3,4 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
2000 100000 22,5 49,9 79,3 109,9 141,7 7,0 14,0 21,0 28,0 35,0
  3,2 3,5 3,8 3,9 4,0 1,0 1,1 1,1 1,1 1,1
4000 40000 57,7 128,4 205,6 287,1 371,3 20,1 40,2 60,4 80,5 100,7
  2,9 3,2 3,4 3,6 3,7 1,0 1,1 1,1 1,1 1,1
4000 80000 64,6 144,6 230,1 320,1 410,4 21,3 42,6 63,9 85,1 106,3
  3,0 3,4 3,6 3,8 3,9 1,1 1,1 1,1 1,1 1,1
4000 120000 71,0 158,8 253,0 349,4 448,0 22,6 45,1 67,8 90,5 113,0
  3,2 3,6 3,8 3,9 4,0 1,1 1,1 1,1 1,1 1,1
4000 160000 72,4 160,7 257,1 356,2 457,8 23,3 46,7 70,0 93,6 116,9
  3,1 3,5 3,7 3,8 3,9 1,0 1,1 1,1 1,1 1,1
4000 200000 75,7 167,4 267,2 369,1 474,8 24,3 48,6 72,9 97,2 121,5
  3,1 3,4 3,6 3,8 3,9 1,0 1,0 1,0 1,0 1,0
6000 60000 129,1 287,1 456,6 636,0 818,4 44,8 89,5 134,3 179,2 224,0
  2,9 3,2 3,4 3,5 3,6 1,0 1,0 1,0 1,0 1,0
6000 120000 141,3 315,1 501,6 693,5 893,6 46,9 93,8 140,5 187,4 234,1
  3,0 3,4 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
6000 180000 142,0 318,0 504,6 699,3 901,5 48,2 96,4 144,7 192,7 244,2
  3,0 3,3 3,5 3,7 3,8 1,1 1,1 1,1 1,1 1,1
6000 240000 147,9 333,2 529,6 733,4 944,8 49,8 99,7 149,2 199,1 248,7
  3,0 3,3 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
6000 300000 152,2 338,5 539,7 749,3 963,7 51,7 103,3 155,0 207,0 258,9
  3,0 3,3 3,6 3,7 3,8 1,1 1,1 1,1 1,1 1,1
8000 80000 241,4 534,1 848,8 1178,1 1517,0 78,9 158,2 237,2 316,4 395,1
  3,0 3,4 3,5 3,7 3,8 1,0 1,0 1,0 1,0 1,0
8000 160000 243,9 546,4 868,6 1207,3 1555,1 82,6 165,8 248,6 331,5 414,0
  3,0 3,3 3,5 3,7 3,8 1,1 1,1 1,1 1,1 1,1
8000 240000 257,1 569,5 907,7 1256,0 1615,7 84,1 168,4 252,4 336,7 420,7
  3,0 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
8000 320000 259,7 577,5 921,2 1282,1 1649,0 86,3 172,6 258,9 345,5 431,8
  3,1 3,4 3,6 3,8 3,9 1,1 1,1 1,1 1,1 1,1
8000 400000 244,8 551,0 877,3 1224,0 1586,4 88,4 176,8 264,8 353,3 441,7
  2,8 3,1 3,3 3,5 3,6 1,1 1,1 1,1 1,1 1,1
10000 100000 369,2 834,8 1332,0 1842,6 2370,4 122,5 245,5 367,7 490,3 612,9
  3,0 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
10000 200000 395,0 872,3 1389,6 1921,7 2476,0 125,9 251,9 377,7 504,0 629,7
  3,1 3,4 3,7 3,8 3,9 1,0 1,0 1,0 1,0 1,0
10000 300000 397,8 875,6 1391,9 1925,1 2479,0 128,5 257,1 385,5 514,1 642,5
  3,1 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
10000 400000 393,8 879,8 1391,8 1931,4 2493,2 131,5 263,0 403,6 529,2 656,8
  3,0 3,3 3,5 3,7 3,8 1,0 1,0 1,0 1,0 1,0
10000 500000 406,4 907,7 1448,4 2014,0 2601,4 133,9 267,8 401,8 536,0 670,1
  3,0 3,4 3,6 3,7 3,8 1,0 1,0 1,0 1,0 1,0
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We first used the SPRAND generator attributed to Cherkassky et al. [5]. We present results 

for random graphs with uniform arc lengths at random from interval [ ]0,10000  with 

{ }2000, 4000,...,10000n∈ , { }10 , 20 ,...,50m n n∈ n  and { }200, 400,...,1000K ∈ . The origin 

and destination nodes were 1 and n, respectively. In total 10x5x5x10=2500 instances were 

solved by each algorithm. Note that the size of the networks in this experiment is reasonably 

high, for example, the greater size corresponds to a network with 10000 nodes and 500000 

arcs. The results are shown in Table 1. We note that for all instances, the number of 

enumerated paths equals K, that is, the number of origin-destination paths in each instance is 

greater or equal to K. We observe that the CPU time employed by KPPSSP1 algorithm is at 

most four times the CPU time of the KPPSSP2 algorithm. This fact is directly in relation with 

the average of the number of shortest path computations per number of computed paths (#sp). 

Note that this ratio is at most four for the KPPSSP1 algorithm and at most 1.1 for the 

KPPSSP2 algorithm. In other words, the number of shortest path computations carried out for 

KPPSSP2 algorithm is practically one per computed path. Clearly, the practical behavior of 

this algorithm can be qualified as “ideal” for this kind of instances. Moreover, at most four 

shortest path computations per computed path are made in the KPPSSP1 algorithm. This 

number is also low. An explanation is that the average depth of the each computed path in the 

tree of trees is close to three. Therefore, the number of times calling to procedure BT is close 

to 3K. Moreover, the value of #sp in the KPPSSP2 algorithm remains constant for all values 

of K, while the value of #sp in the KPPSSP1 algorithm slowly increases as K increases. In 

other words, the CPU time and the number of shortest path computations in both algorithms 

are linear in K. Clearly, the practical behaviors of both algorithms coincide with the 

“optimistic” case for the SPRAND generator problems. 

We also used the SPGRID generator attributed to Cherkassky et al. [5]. We present results 

for Grid-SSquare (square grids) family data (Table 2). We present results for random graphs 

with uniform arc lengths at random from interval [ ]0,10000  with { }16,32,64,128X ∈  and Y 

= X. The origin and destination nodes were 1 and n-1, respectively. In total 4x5x10=200 

instances were solved using each algorithm.  Also, we note that for all instances, the number 

of enumerated paths equals K, that is, the number of origin-destination paths in each instance 

is greater or equal to K. We observe that the CPU time employed by KPPSSP1 algorithm is at 

most 3.5 times the CPU time of the KPPSSP2 algorithm. In this case, the value of #sp in the 

KPPSSP1 algorithm is at most 1.9 times the the value of #sp in the KPPSSP2 algorithm. 
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Again, the behavior of both algorithms is linear in relation with K. Moreover, the practical 

behaviors of both algorithms is close to the “optimistic” case for the SPGRID generator 

problems. For example, at most 7 (≥ 6.5) shortest path computations per computed path are 

made in the KPPSSP1 algorithm. This number is 4 (≥ 3.7) for the KPPSSP2 algorithm. We 

observe that the average depth of the tree of trees for the SPGRID instances is at most 3 since 

the difference of the ratio #sp for the two algorithms is near to 3.  

From tables 1 and 2, we also conclude that the instances provided by SPRAND were easily 

solved for all the codes that the instances obtained by SPGRID as already was observed in 

others shortest path algorithms experiments. 

 
Table 2: Grid-SSquare family data. 

 KPPSSP1 KPPSSP2 
X=Y / K 200 400 600 800 1000 200 400 600 800 1000 

16 0,2 0,5 0,8 1,0 1,3 0,1 0,2 0,2 0,3 0,4 
 5,7 6,1 6,3 6,4 6,5 3,8 3,8 3,7 3,7 3,7 

32 2,3 5,2 8,3 11,5 14,7 0,9 1,8 2,7 3,6 4,5 
 5,1 5,5 5,7 5,8 5,9 3,2 3,3 3,3 3,3 3,2 

64 33,2 74,4 118,2 164,3 212,3 12,2 24,5 36,9 49,5 62,0 
 4,7 5,1 5,3 5,4 5,6 2,9 2,9 2,9 3,0 3,0 

128 479,2 1055,8 1676,8 2343,6 3003,2 184,2 368,0 552,6 738,2 924,0 
 4,9 5,3 5,6 5,7 5,9 3,2 3,4 3,4 3,5 3,5 

 
We also used the SPACYC generator attributed to Cherkassky et al. [5]. We do not report 

a table of the CPU time and the ratio #sp for short. It is clear that the KPPSSP2 algorithm 

only makes 1 shortest path computation per enumerated path in acyclic networks. 

 

6. Conclusions. 

From this paper, we conclude that the K point-to-point shortest simple path problem can be 

solved using only  space instead of O( )K m+ 2O( )Kn space in the same O( ) 

time . Therefore, the reduction of the requirements reached by our algorithm is notability 

reduced. Moreover, if in our algorithm, we store not only the tree of trees but also the K 

shortest path trees then, we obtain a version of the algorithm using  space and not 

using the procedure BT. The worst-case time complexity of this algorithm is still 

O( ), but in the “optimistic” case commented on section 3, the complexity of 

the algorithm could be O( ) time since procedure MAP takes O(m) time and the 

algorithm needs to compute one shortest path tree in each iteration. In this paper, we exploit 

the structural relations between two path trees, that is, the kth best solution can be obtained 

from at least one of the k−1 best previous solutions using the respective trees. Thus, we 

max( , , )Knf n m C

O( )Kn

max( , , )Knf n m C

max( , , )Kf n m C
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design an algorithm that in the “optimistic” case takes advantage of the exchange operation 

for a tree of the PPSSP problem. On the other hand, the results addressed in this paper can be 

useful to develop new algorithms for the multiobjective shortest path problem from one 

source node to one sink node in a network (see Azvedo et al. [2] , Climaco and Martins [6] 

and Raith and Ehrgott [19]). 
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